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General comments. In [6] we consider three example problems for numerical continuation and
bifurcation analysis in nonlinear PDEs. Here we comment on the associated pde2path implementa-
tions, in the demos seco, sh35disk, and schnakdc, and additionally on the Allen–Cahn dead core
demo acdc, which prepares schnakdc, all included in the download DMVdemos at [9]. We start with
general comments on pde2path, see also [7, Chapter 5], and then give overviews and specifics for
the individual demos. In Table 1 we list acronyms used in [6] and here.

Table 1: Acronyms.

BC Boundary Condition BD Bifurcation Diagram BP Branch Point
DC Dead Core FP Fold Point HP Hopf Point
FEM Finite Element Method PC Phase Condition PO Periodic Orbit

pde2path aims at PDE problems of the form

Md∂tu =−G(u,λ ) = ∇ · (c⊗∇u)−au+b⊗∇u+ f (u), (1)

with u = u(x, t) ∈RN (N components), x ∈Ω⊂Rd some bounded domain, d ∈ {1,2,3} (the 1D, 2D
and 3D case, respectively), and time t ≥ 0, and where (1) can be complemented with various BCs.
We refer to [6] or [7] for the meaning of terms in G(u,λ ). The basic idea is to first discretize (1)
in space using some FEM built into pde2path, and then treat the resulting high–dimensional ODEs,
respectively algebraic systems in case of steady states of (1).

As usual in pde2path we assume that all problem data is contained in the MATLAB struct p. This
includes the object p.pdeo (with sub–objects fem and grid), which provides methods to generate
FEM meshes and assemble FEM matrices M (mass matrix) and K (e.g., Laplacian, including the BCs),
and several more, for instance for mesh adaptation. Typical initializations and first continuation steps
run as follows (Listings 1–3 contain concrete examples):

1. Call p=stanparam() to initialize the fields in p with defaults values.
2. Call a pdeo constructor, for instance p.pdeo=stanpdeo1D(p,aux) (which discretizes an in-

terval), where here and in the following aux or . . . stands for variable arguments.
3. Initialize p.u with a first solution (or a solution guess, to be corrected in a Newton loop), and

append the parameters at the end of p.u.
4. In a function oosetfemops (in the working directory1), use p.pdeo.assema to generate p.mat.M
1MATLAB always searches the working directory first, which is an easy way to overload pde2path library functions
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(the dynamical mass matrix, always required) and p.mat.K (a Laplacian), and possibly further
FEM matrices, e.g., for BCs.

5. Use p.mat.M and p.mat.K in a function r=sG(p,u) to encode the (discretized) PDE (and the
Jacobian in Gu=sGjac(p,u)). Here, the input argument u contains the “PDE unknowns” u and
the parameters (appended at the end), and p is typically useful for simple coding, in particular
the subfields of p.mat such as the preassembled matrices M and K.

6. Call p=cont(p) to (attempt to) continue the initial solution in some parameter, including bi-
furcation detection, localization, saving to disk, and plotting.

7. Call p=swibra(dir,bpt,newdir) (or p0=qswibra(dir,bpt,aux); p=seltau(...), see
[6, Algorithms 2.2 and 2.3]) to attempt branch switching at branch point bpt in directory dir.
For Hopf bifurcations, call p=hoswibra(...), for PO branch switching call p=poswibra(...).2

In all cases, subsequently call p=cont(p) again, with saving in newdir.
8. Perform special tasks such as fold or branch–point continuation; use plotbra(dir,pt,aux)

to plot bifurcation diagrams, and plotsol(dir,pt,aux) to plot sample solutions.
Steps 1–3, and a call to oosetfemops are typically combined into an init-function, for instance
p=secoinit(...) in Listing 2.

Remark 1. a) The right hand side G, Jacobian ∂uG, and a number of further functions needed/used to
run pde2path on a problem p, are interfaced via function handles in p.fuha. For instance, you can
give the function encoding G in (1) any name, e.g., myrhs, with signature r=myrhs(p,u), and then
set p.fuha.sG=@myrhs. In most demos, we simply keep the “standard names” sG and sGjac and
code these functions in the respective demo directory. For other handles in p.fuha there are standard
choices which we seldomly modify, e.g. p.fuha.savefu=@stansavefu. Functions for which the
“default choice” is more likely to be modified include, e.g.,

• p.fuha.outfu=@stanbra; % signature out=stanbra(p,u). Here the user defines what
data (typically parameter values and some norm(s) of u) is used for branch output, e.g., for
later plotting of BDs.

• p.fuha.lss=@lss; % signature [x,p]=lss(A,b,p). Linear systems solver x = A−1b.
The default lss is just an interface to MATLAB’s \; other options include, e.g., lssbel (bordered
elimination) and lssAMG (preconditioned GMRES using ilupack [2]).

b) An important feature of the FEM used to spatially discretize the PDEs is its flexibility with respect
to the domain shape and BCs, and its flexibility and well established procedures for adaptive mesh
refinement. pde2path comes with a number of convenience functions to discretize standard domains
(intervals, rectangles, cuboids, disks, sectors, balls, . . . ), and with methods for mesh adaptation in
1D, 2D, and 3D, based on standard error–estimators. Here, we only use some mesh adaptation in the
demo acdc, and refer to [7, Chapters 4 and 6] for details. c

The demo seco. In [6, §3.1] we consider the 2–component reaction system

∂tu1 = ∂
2
x u1 +

u2−u1

(u2−u1)2 +1
− τu1,

∂tu2 = d∂
2
x u2 +α( j0− (u2−u1)),

(2)

set up in [4] as a model for semiconductors. Throughout we fix (τ,d) = (8,0.05), and initially also
α = 0.02, and take j0 as the primary continuation/bifurcation parameter. For all ( j0,α), (2) has the

2There are further specialized methods for branch switching, for instance twswibra for switching to traveling wave
branches.
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unique spatially homogeneous steady state

u∗ = (u∗1,u
∗
2), u∗1 =

j0
τ( j2

0 +1)
, u∗2 = j0 +u∗1. (3)

For suitable parameter choices, there are codimension–2 points, near which u∗ may undergo either a
(steady) Turing or a Hopf bifurcation, see [6, Fig. 4].

Table 2: Scripts and functions in seco.

file purpose, remarks
cmds1,cmds2 scripts, generating [6, Fig. 5 and Fig. 6].
secoinit initialization of problem struct p with standard parameter values, call of stanpdeo1D to

generate a 1D PDE object (interval, with mesh), initialization of u with the homogeneous
steady state, call of oosetfemops to generate the FEM matrices.

oosetfemops assemble and store the mass matrix M, and the (1-component) Neumann-Laplacian K.
sG,sGjac rhs of (4), and Jacobian.
nodaljac ”local” derivatives (terms in Jac without spatial derivatives), called in sGjac and spufu.
bpjac implements ∂u(Guφ) for BP continuation, see also hpjac for HP continuation.
secobra mod of library function hobra; subtract steady state from solution for branch output
getss convenience function to compute steady state u∗ from parameters.
spufu ”spectral” user function, used to plot dispersion relations.

Table 2 list the files used to implement and run (2). in the demo seco, and Listing 1 shows
the three basic functions essentially needed in a typical pde2path demo. In secoinit we set up
the domain, the initial solution (3), based on the parameters passed to secoinit in the script file
cmds1, and set a few pde2path control parameters as appropriate for this problem. This, to some
extent, is trial and error; moreover, switches and numerical controls such as p.nc.dsmax can be
(and often are) changed later any time. Additionally, in line 5 we switch on the bordered elimination
linear system solver lssbel, which in 1D, due to the band structure of M and K, usually yields a
significant speedup. Here the border of the Jacobian ∂uH of the extended system H = (G, p), with p
the arclength equation [6, (6)], only has width 1 from p, and the 0 in setbel means that ∂uG itself
has no border.

In the function oosetfemops we assemble (the 1–component) mass matrix M and stiffness ma-
trix K; we store the (block–diagonal) system mass matrix in p.mat.M (always needed), and the (1–
component Neumann–)Laplacian in p.mat.K. We do not need BC matrices, and compose the system
diffusion matrix from p.mat.K in sG; this allows, e.g., to do also continuation in diffusion constants.
Altogether, the residual r in sG consists of the diffusion terms (−∆u1,−d∆u2) and the “nonlinearity”
f , which contains all terms without derivatives.3

function p=secoinit(lx,nx,par) % init for MWBS ’97 semiconductor model

p=stanparam (); p.nc.neq=2; % init with stanparam , 2-compo -system

p.sol.ds= -0.01; p.sol.dsmax =0.05; p.sw.bifcheck =2; % reset some pars

p.fuha.outfu=@secobra; p.plot.bpcmp =8; % output function handle , and compo

p=setbel(p,0,1e-6,10,@lss); % use bordered elim. lss (always good in 1D),

% with border width 0, tolerance 1e-6, and at most 10 iterations

pde=stanpdeo1D(lx ,2*lx/nx); p.vol=2*lx; % standard 1D PDE object

p.np=pde.grid.nPoints; p.pdeo=pde; % store number of grid -points , and pdeo

p.nu=p.np*p.nc.neq; p.sol.xi=1/p.nu; % DoFs , and weight for arclength

3Here f is computed in a simplified FEM setup as M fnodal from the mass matrix and the nodal values of f . The
genuine (P1–) FEM would require interpolating u to the element centers and then evaluating f ; the error between the two
is bounded by h2, where h is the (local) mesh width. See [7, §4.1] for further comments.
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p.nc.lammin =0; p.nc.lammax =5; p.nc.dsmax =0.1; % lam -range , and max stepsize

j0=par (1); tau=par (3); als=j0/(tau*(j0 ^2+1)); us=als+j0; % initial sol

u=als*ones(p.np ,1);v=us*ones(p.np ,1);p.u=[u;v;par]; % append pars and store

p.nc.ilam =1; % select the (initial) primary active par , here j0

p.sw.sfem=-1; p=oosetfemops(p); % set FEM matrices

function p=oosetfemops(p)

% generate FEM matrices , here just mass M and Neumann -Laplacian K

[K,M,~]=p.pdeo.fem.assema(p.pdeo.grid ,1,1,1);

p.mat.M=[M 0*M;0*M M]; p.mat.K=K; % store matrices

function r=sG(p,u) % rhs for MWBS ’97 semiconductor model

% split u into pars and PDE fields u1 and u2:

par=u(p.nu+1:end); j0=par(1); al=par(2); tau=par(3); D=par(4);

u1=u(1:p.np); u2=u(p.np +1:2*p.np);

% compute nodal ’nonlinearity ’ (terms without spat.derivatives):

f1=(u2 -u1)./((u2 -u1).^2+1) -tau*u1; f2=al*(j0 -(u2 -u1)); f=[f1;f2];

Ks=p.mat.K; K=[Ks 0*Ks; 0*Ks D*Ks]; % the diffusion matrix

r=K*u(1:p.nu)-p.mat.M*f; % the residual

Listing 1: The three “basic” functions in seco, following standard pde2path principles

In 1D (more precisely: for a small number nu of DoF) speed is usually not an issue, and hence
sGjac.m implementing ∂uG could be omitted, setting p.sw.jac=0 to use numerical Jacobians. How-
ever, ∂uG can in fact be implemented in a few lines, see Listing 2, and this should be considered good
practice. Here we also “outsource” the Jacobian nodaljac of the nonlinearity as it is also called in
spufu.
function Gu=sGjac(p,u) % Jac for MWBS ’97 semiconductor model

n=p.np; [f1u ,f1v ,f2u ,f2v]= nodaljac(p,u); % Jac of ’nonlinearity ’

Fu=[[ spdiags(f1u ,0,n,n),spdiags(f1v ,0,n,n)];% put f_u into block matrix

[spdiags(f2u ,0,n,n),spdiags(f2v ,0,n,n)]];

D=u(p.nu+4); Ks=p.mat.K; K=[Ks 0*Ks; 0*Ks D*Ks];% diffusion matrix

Gu=K-p.mat.M*Fu; % Jacobian

function [f1u ,f1v ,f2u ,f2v]= nodaljac(p,u) % for seco

n=p.np; u1=u(1:n); u2=u(n+1:2*n); den=(u2-u1).^2+1; % u, and a denominator

par=u(p.nu+1:end); al=par(2); tau=par(3); % parameters in nonlinearity

f1u=-1./den +2*(u2 -u1).^2./( den .^2)-tau; f1v=-f1u -tau;

f2u=al*ones(n,1); f2v=-f2u;

Listing 2: The Jacobian sG, and nodaljac which computes the local derivatives, and is also called in spufu

to compute dispersion relations.

Listing 3 gives the first 9 lines of the script file cmds1, of altogether 70 lines, which contain
many plotting commands and somewhat detailed comments. The file is organized in cells, started by
%%, which can be executed individually, which we strongly recommend. In the second cell, we use
initeig to compute a guess for shifts for Hopf eigenvalues, cf. [7, §3.3].
%% MWBS97 model , trivial and Turing branches , and bif from Turing

al =0.02; j0 =3.3; tau =0.05; D=8; kc=(al*tau/D)^0.25; nw=8; % parameters ,

lx=nw*pi/kc; nx=nw*40; par=[j0;al;tau;D]; dir=’0’; % dom.size and nx

p=secoinit(lx ,nx ,par); p=setfn(p,dir); % init , set output dir for tr.branch

%% compute guess for Hopf -spectral shift , then cont trivial branch

p=initeig(p ,0.5); p.nc.neig =[10 ,10]; p.nc.eigref (1) = -0.05;

p.nc.dsmax =0.05; p.sw.verb =1; p.file.smod =5; p=cont(p,30);

%% primary Turing mode
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p=swibra(’0’,’bpt1’,’T1’); p.nc.dsmax =0.05; p.sol.ds= -0.02; p=cont(p,60);

Listing 3: Start of script cmds1.m, generating [6, Fig.5]. We choose (initial) parameters, the domain size
2lx = 2nwπ/kc with nw = 8 and critical wave number kc such that 8 waves fit into Ω at criticality, and choose
40 points per wave for the spatial discretization. Then we compute (via initeig) a guess for the temporal
wave number ω1 near which we aim to detect Hopf eigenvalues, and continue the trivial branch in
j0. Subsequently, we switch to a number of Turing modes, to the localized Turing mode, and from
the generated snaking branch to some localized Hopf modes. Then we deal with plotting.

The further files from Table 2 are optional and/or for special tasks. The function bpjac.m im-
plements ∂u(Guφ) which appears in BP continuation, cf. [6, §2.4], and to hpjac.m implementing
a similar (large) matrix of derivatives of Guφr and Guφi needed for HP continuation, cf.[7, §3.6.1
and §4.4]. In 1D, these functions can be omitted using numerical Jacobians, but in 2D (or even 3D)
this becomes rather slow. Finally, secobra is a modification of the library function hobra, which
generates [pars; m1; m2; m3; m4] for branch–output, where m1 = T (period, 0 for steady states),
m2 = max(u1), m3 = min(u1), and m4 = ‖u‖2 as defined in [6, (51)].

Listing 4 shows the first step to compute the Turing–resp. Hopf bifurcation lines in j0–α pa-
rameter space ([6, Fig. 4]) via BP and HP continuation. Here we choose α as the new primary
active parameter (at position 2 in the parameter vector), and hence j0 becomes a secondary ac-
tive parameter. Our main comment is that to improve robustness we here need to increase the
parameter p.nc.del (steplength for the finite differences for parameter derivatives, which are al-
ways done numerically) from its default 10−4 to 10−2. The HP continuation works similarly via
p=hpcontini(’0’,’hpt1’,2,’hpc1’), and then we plot the results. Listing 5 first shows a typical
call of hoswibra and subsequent continuation of the periodic orbit (first 4 lines). Then we illustrate
the rather special task for the system (2), of how to splice together a Turing mode and a Hopf mode
to obtain a “mixed solution”, see [6, Fig.6].
%% BP and HP cont , needs a larger delta for FDs for the param -derivatives

p=bpcontini(’0’,’bpt1’,2,’bpc1’); p.sol.ds =0.005; p.nc.dsmax =0.2;

p.nc.del=1e-3; p.plot.bpcmp =1; p.nc.tol=1e-6; p=cont(p,50);

Listing 4: BP continuation from cmds1b.m. Next we do the same for HP1, then plot, while at the end of
cmds1b.m we plot the dispersion relations from [6, Fig. 4]

%% spatially homogeneous primary Hopf; use tl=40 points in t;

ds=0.1; aux.tl=40; p=hoswibra(’0’,’hpt1’,ds ,4,’H1’,aux); p.nc.dsmax =2;

p.sw.bifcheck =0; p.file.smod =1;% switch off bif.detection , save every point

p.hopf.flcheck =1; p.hopf.fltol =1e-6; % switch on multiplier comp

p.sw.verb =0; p=setbel(p,2,1e-4,5,@lss); p=cont(p,40); % use bel , and go!

%% splice together Hopf and Turing: choose xcut and j0 by trial and error

p1=loadp(’T1’,’pt25’); p=loadp(’H1’,’pt25’); xcut =-160; j0guess =3.35;

x=getpte(p);idx=find(x>xcut);%find indizes where to replace Hopf by Turing

p.u(p.nu+1)=j0guess; p.hopf.lam=j0guess; % set j0 to the guess j0guess

for j=1:p.hopf.tl % put Turing -soln into Hopf -data

p.hopf.y(idx ,j)=p1.u(idx); p.hopf.y(idx+p.np,j)=p1.u(idx+p.np);

end

Listing 5: Start of script cmds2.m, illustrating a basic call of hoswibra, and “how to mix solutions”. The
remainder of the script deals with continuation of the obtained branch, and plotting.

The demo sh35disk. In [6, §3.1], following [11], we consider the cubic–quintic Swift–Hohenberg
(SH) equation ∂tu =−(1+∆)2u+εu+νu3−u5 on a disk with Neumann BCs for u and ∆u. Setting
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u1 = u and u2 = ∆u we rewrite the 4th order SH equation as the 2nd order system

Md∂t

(
u1
u2

)
=

(
−∆u2−2u2− (1−ε)u1+ f (u1)

−∆u1 +u2

)
(4)

with a singular dynamical mass matrix Md =
(

1 0
0 0

)
, f (u1) = νu3

1−u5
1, and Neumann BCs for u1 and

u2. The implementation again follows standard principles of pde2path demos, see Table 3 for the
used files and comments. Compared to the demo seco, the functions q*.m are new. They implement-
phase conditions [6, §2.4]: After standard preparations in shinit and oosetfemops, qy and qyder

are the y–phase conditions for localized solutions on the half disk, see Listing 6, while on the full
disk we also need qx and qrot and combinations thereof.

Table 3: Scripts and functions in sh35disk.

file purpose, remarks
cmds1 Basic script, generating [6, Figures 7–9].
shinit initialization; setup of half–disk domain and mesh, initialization with u≡ 0.
oosetfemops assembly of mass matrix M, Laplacian K, and of matrices for phase conditions.
sG, sGjac rhs of (4), and Jacobian.
qy, qyder phase condition qy(u) = 〈∂yuold,u〉 = (Ky∗p.u)′ ∗u, with ∂uqy(u) = (Ky∗p.u)′. Similar

for ∂x – or ∂φ –phase conditions (qx or qrot), where qrot(u) = 〈(−y∂x + x∂y)uold,u〉 =
(Krot∗p.u)′ ∗u, and combinations such as qxy for x–and y–phase condition, qxyr (all
three) and their derivatives.

qyon convenience function to switch on the y–phase condition; similar for qxon and qroton etc.
spjac implements ∂u(Guφ) for fold continuation.
shJ, shbra shJ computes the energy F [6, (53)], and is called and put onto output branch in shbra

(modification of library function stanbra).
h2fdisk (mirror u from) half disk to full disk. See also h2fdisk0 where instead of mirroring we

extend u by 0.

function q=qy(p,u) % phase condition for transl.invariance in y

n=p.np; u0y=p.mat.Dy(1:n,1:n)*p.u(1:n); q=u0y ’*u(1:n);

function qu=qyder(p,u) % derivative of transl.phase condition in y

qy=(p.mat.Dy(1:p.np ,1:p.np)*p.u(1:p.np))’; qu=[qy , 0*qy];

Listing 6: Vertical shift phase condition qy and derivative qyder.

Remark 2. A special feature, also compared to the examples from [7], is that for (4) we use a
piecewise quadratic FEM following [5]. The main advantage is that this is more robust than the
default P1–FEM wrt “branch jumping”. See also [8], and [10] for an online version of this demo. c

The demo acdc. To show how dead core (DC) problems of type [6, (56) and (63)] can be treated
with pde2path, we first consider modifications of the Allen–Cahn type equation from [1], given by

∂tu = c2∂
2
x u+ f (u,x) in Ω = (0,1), ∂xu(0, t) = ∂xu(1, t) = 0, u|t=0 = u0, (5)

where f (u,x) = u(1−u)(u−a(x)) with a ∈C1([0,1],(0,1)). For fixed x, the ODE d
dt u = f (x,u) has

the two stable fixed points u = 0 and u = 1, and the unstable fixed point u = a(x). The idea to allow
an x–dependent a(x) is that for non–constant choices of a, e.g., periodic a, and small c2 > 0 there
exist stable states u for (5) for which u(x) ≈ 0 on some intervals I1, . . . , In, and u(x) ≈ 1 roughly on
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the complements, with narrow interfaces in between. This is partly motivated by applications, see
[1], but mostly by the fact [3] that for any constant a≡ a0 ∈ (0,1) states with interfaces are unstable
and the only stable steady states are the constant states u ≡ 0 or u ≡ 1. Similar results also hold for
the case of Dirichlet BCs: For instance, requiring u(0, t) = 1,u(1, t) = 0, the only stable steady state
is monotonously decreasing and thus has exactly one interface.

Motivated by (5), to obtain a DC problem with possibly many stable DC solutions we thus con-
sider the toy problem

∂tu = c2∆u+ f (u,λ ,x) in Ω, u = 1 on ∂Ω, u+ = max(u,0), (6)

respectively its steady version, with parameters c2 > 0 and λ > 0, first in 1D, Ω = (0,1), and with

f (u,λ ,x) = f̃ (u,x)−λ (uγ

+−u), f̃ (u,x) = u(u−1)(a(x)−u). (7)

We choose a(x) = 0.6+0.2cos(8πx), which later we also use in 2D as a = a(r), r =
√

x2 + y2. For
any x ∈Ω and γ ∈ (0,1), u = 1 is always a fixed point of the ODE d

dt u = f (u,λ ), but as λ increases,
u = 1 loses stability in a transcritical bifurcation. Consequently the trivial solution u ≡ 1 of (6) is
stable for small λ > 0 but then loses stability at some λ0 > 1 to an unimodal branch, which develops
a dead core in the middle of the domain.

(a) (b)

0 20 40

0.5

1

1.5

||
u

||
2

60
55

40

60

2510

Figure 1: Results from acdc/cmds1D for(6) over Ω = (0,1) with (γ,c) = (0.85,0.01). (a) BD; trivial branch
u≡ 1 (black), and first three nontrivial branches, b1 (blue, transcritical, only 1 direction), b2 (magenta, pitch-
fork), b3a and b3b (dark/light brown, transcritical). (b) Samples, with dead cores (u < 10−8) marked by ma-
genta crosses in b1/60, b2/60, and b3a/40. For smaller γ we also find (stable) solutions with several (disjoint)
dead cores.

In Fig. 1(a) we show a BD and some sample solutions for the case Ω=(0,1), (γ,c2)= (0.85,0.01).
Depending on the parameters, in particular γ and c2, also some higher bifurcations (with kernels
φ` = sin(`πx), ` ≥ 2) from the trivial branch lead to branches which develop stable interfaces and
subsequently stable dead cores consisting of several disjoint intervals.

Table 4: Scripts and functions in acdc.

file purpose, remarks

cmds1D, cmds2D Basic scripts, generating Figures 1 and 2.
acinit initialization; setup of domains and (initial) meshes, initialization with u≡ 1.
oosetfemops assembly of mass matrix M and Laplacian K.
sG, sGjac, afu rhs of (6), Jacobian, and the x–(resp. r–) dependent function a.
nloop, nloopext modifications of the Newton loop algorithms, incorporating (9).
mypsol customized plotting to visualize DCs, see also mpsol2D.
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Table 4 list the files for the implementation of (6), in 1D and 2D. The two main issues we need to
deal with are the non–differentiability of f from (7) at u = 0, and with keeping u≥ 0 throughout, in
particular during Newton iterations such as

un+1 = un− [∂uG(un)]
−1G(un), (8)

and similar for the extended systems [6, (22b)]. To keep u≥ 0 we make local copies of the pde2path
library functions nloop and nloopext in the working directory, and, e.g., in nloop.m add the com-
mand

u1(1 : p.nu) = max(u1(1 : p.nu),0) (9)

after computing the update u1=un+1, and similar in nloopext.m. For u↘0 we have ∂u f (u,λ ,x)↗∞

and f is not differentiable at u = 0. Thus, to approximate the (non-existing) “Jacobian” for G(u) =
−c2∆u− f (u,λ ,x) we use

Gu(u)v =−c2∆v−h(u,λ ,x)v with h(u,λ ,x) = ∂u f (max(u,δ ),λ ,x), (10)

with a small δ > 0, namely δ = 10−6. Together, (9) and (10) can be seen as an ad hoc Newton
method for (7), which exploits that DCs are valid solutions, and since we do not modify (7), we solve
the original problem.4

In Fig. 2 we essentially study the same problem as in Fig. 1, now in 2D. We use an almost disk
shaped domain, which however we slightly disturb to an ellipse with major axis e = 1.1 to break the
rotational invariance. We also use a larger diffusion c2 = 0.05 to avoid too steep interfaces, and start
with a rather coarse mesh of nt≈ 3300 elements. Naturally, steep interfaces suggest adaptive mesh
refinement. In pde2path, mesh adaptation is based on user defined elements–to–refine–selector
functions, linked as p.fuha.e2rs. The default choice is the library function e2rs, using a standard
element wise error estimate ητ , see [7, §4.2.1]. Here, instead of ητ we just use the (discrete) curvature
(|∆u|)τ as an ad hoc selector, yielding the refined meshes in Fig. 2(b), with around 10000 elements.
This mesh adaptation is needed to continue the nontrivial branches to larger λ , i.e., λ > 20, say. The
primary bifurcating branch (c1) shows an elliptic DC for λ > λc ≈ 9.4 (with free boundary roughly
parallel to the domain boundary ∂Ω), and the second branch shows a DC for λ > 21, which becomes
non–convex for λ > 22.5.

(a) (b)
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Figure 2: Results from acdc/cmds2D for (6) over an ellipse with e = 1.1, (γ,c) = (0.85,0.05). (a) BD of
trivial and first two nontrivial branches c1 (blue) and c2 (magenta), with mesh adaptation each 10th continua-
tion step. (b) Sample solutions, also illustrating the adapted meshes, with dead cores marked by magenta dots.

4Naturally, the false Jacobians for solutions involving DCs also generate wrong spectra, and the consequences of this
for bifurcation detection and handling still need to be studied; see [6] for further comments.
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The demo schnakdc. In [6, §3.3] we consider the Schnakenberg reaction diffusion system

∂tu = ∆u−u1/m
+ +u2v, ∂tv = d∆v+λ −u2v. (11)

The term −u1/m
+ replaces the standard term −u, and for m > 1 is singular as u↘ 0. This leads

to DC pattern formation, including Hopf bifurcations from solution branches with DCs, where the
(time–)oscillations at least near bifurcation are strongly localized at the “live” part u > 0. For the
implementation we closely follow the demo acdc, where additionally we also use modified Newton
loops for periodic orbits, namely honloopexp, similar as in (9). Table 5 lists and comments on the
files used in the demo schnakdc.

Table 5: Scripts and functions in schnakdc; quite similar to acdc.

file purpose, remarks

cmds1D, cmds2D Basic scripts, generating [6, Figs 10 and 11].
schnakinit initialization; setup of domains (1D and 2D).
oosetfemops assembly of mass matrix M and Laplacian K.
sG, sGjac rhs of (11), and Jacobian.
nloop, nloopext modifications of the Newton loops, incorporating upos, and similar in honloopext.
mypsol customized plotting to visualize DCs, see also mpsol2D, and myhopl (for Hopf orbits).
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[4] M. Meixner, A. De Wit, S. Bose, and E. Schöll. Generic spatiotemporal dynamics near codimension-two
Turing-Hopf bifurcations. Phys. Rev. E, 55(6, part A):6690–6697, 1997.

[5] C. Pozrikidis. Introduction to finite and spectral element methods using MATLABr. CRC Press, Boca
Raton, FL, second edition, 2014.

[6] H. Uecker. Continuation and bifurcation for Nonlinear PDEs – algorithms, applications, and experiments.
Jahresbericht DMV, 2021.

[7] H. Uecker. Numerical continuation and bifurcation in Nonlinear PDEs. SIAM, Philadelphia, PA, 2021.

[8] H. Uecker. pde2path with higher order finite elements, 2021. Available at [9].

[9] H. Uecker. www.staff.uni-oldenburg.de/hannes.uecker/pde2path, 2021.

[10] N. Verschueren. Pattern formation on a finite disk using the SH35 equation. https://nverschueren.
bitbucket.io/sh35p2p.html, 2021. Online tutorial.

[11] N. Verschueren, E. Knobloch, and H. Uecker. Localized and extended patterns in the cubic-quintic Swift-
Hohenberg equation on a disk. Phys. Rev. E, (104):014208, 2021.

9

www.icm.tu-bs.de/~bolle/ilupack/
www.staff.uni-oldenburg.de/hannes.uecker/pde2path
https://nverschueren.bitbucket.io/sh35p2p.html
https://nverschueren.bitbucket.io/sh35p2p.html

