
Differential geometric bifurcation problems in pde2path – algorithms and

tutorial examples

Alexander Meiners, Hannes Uecker

Institut für Mathematik, Universität Oldenburg, D26111 Oldenburg, alexander.meiners@uni-oldenburg.de,
hannes.uecker@uni-oldenburg.de

August 20, 2024

Abstract

We describe how some differential geometric bifurcation problems can be treated with the
Matlab continuation and bifurcation toolbox pde2path. The basic setup consists in solving the
PDEs for the normal displacement of an immersed surface X ⊂ R3 and subsequent update of
X in each continuation step, combined with bifurcation detection and localization, followed by
possible branch switching. Examples treated include some minimal surfaces such as Enneper’s
surface and a Schwarz–P–family, some non–zero constant mean curvature surfaces such as liquid
bridges and nodoids, and some 4th order biomembrane models. In all of these we find interesting
symmetry breaking bifurcations. Some of these are (semi)analytically known and thus are used
as benchmarks.

Contents

1 Introduction 2

2 Geometric background, and data structures 7
2.1 Differential geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Default data and initialization of a pde2path struct p . . . . . . . . . . . . . . . . . . 9
2.3 pde2path setup for discrete differential geometry . . . . . . . . . . . . . . . . . . . . 10

2.3.1 Discrete differential geometry FEM operators . . . . . . . . . . . . . . . . . . 10
2.3.2 The pde2path library Xcont . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3 Second order example implementations and results 18
3.1 Spherical caps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2 Some minimal surfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.2.1 Prescribing one component of X at the boundary . . . . . . . . . . . . . . . . 25
3.2.2 A Plateau problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.2.3 Bifurcation from the Enneper surface . . . . . . . . . . . . . . . . . . . . . . . 27

3.3 Liquid bridges and nodoids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.3.1 Nodoid theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.3.2 Nodoid continuation with fixed boundaries . . . . . . . . . . . . . . . . . . . . 30
3.3.3 Short nodoids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.3.4 Long nodoids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.4 Nodoids with pBCs in z . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.5 Triply periodic surfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.5.1 The Schwarz P minimal surface (family) . . . . . . . . . . . . . . . . . . . . . 41
3.5.2 CMC companions of Schwarz P . . . . . . . . . . . . . . . . . . . . . . . . . . 43

1



4 Fourth order biomembranes 45
4.1 Closed Vesicles of spherical topology . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.1.1 Our setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.1.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.1.3 Intermezzo: Numerical Helfrich flow . . . . . . . . . . . . . . . . . . . . . . . . 53

4.2 Biocaps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5 Summary and outlook 59

A Spheres, hemispheres, VPMCF, and an alternative setup 60
A.1 Spheres . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
A.2 Hemispheres . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
A.3 Spherical caps via 2D finite elements . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

B Biocylinders with clamped BCs 64
B.1 Continuation in the spontaneous curvature . . . . . . . . . . . . . . . . . . . . . . . . 65
B.2 Intermezzo: Other radii . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
B.3 Continuation in surface tension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

1 Introduction

There are various algorithms and toolboxes for the numerical continuation and bifurcation analysis
for solutions of partial differential equations (PDEs), for instance AUTO [DCF+97], Coco [DS13],
BifurcationKit.jl [Vel20], and pde2path [Uec21, Uec24]. In its standard setup, pde2path is for
PDEs for functions u : Ω × Λ → RN , where Ω ⊂ Rd is a fixed domain, d = 1, 2, or 3, N ∈ N, and
Λ ⊂ Rp is a parameter domain, or for time–dependent functions u : I × Ω × Λ → RN , I ⊂ R, which
then includes the continuation and bifurcation of time periodic orbits. Essentially, this also applies to
BifurcationKit.jl, while wrt PDEs AUTO originally focuses on 1D boundary value problems, and
Coco in principle allows great flexibility by delegating the PDE definition/discretization to the user.

However, none of these packages seem directly applicable to differential geometric PDEs in para-
metric form, which deal directly with manifolds, e.g., surfaces in 2D, which are not graphs over a fixed
domain. There are well established numerical methods for the discretization of such PDEs, for in-
stance the surface finite element method (surface FEM) [DE13], but there seem to be few algorithms
or packages which combine these with continuation and bifurcation. Two notable exceptions are
the algorithm from [Bru18], and the SurfaceEvolver, for which bifurcation aspects are for instance
discussed in [Bra96].

Here we present an extension of pde2path aimed at geometric PDE bifurcation problems. We
focus on constant mean curvature (CMC) surfaces, which are not necessarily graphs, and with, e.g.,
the mean curvature, or the area or enclosed volume as the primary bifurcation parameter. See Fig. 1
for a preview of the type of solutions we compute. For X a two dimensional surface immersed in R3,
we for instance want to study the parameter dependent problem

H(·)−H0 = 0, (1a)

V (X)− V0 = 0, (1b)

possibly with boundary conditions (BCs) in (a), where H(X) is the mean curvature at each point of X,
and V (X) is the (properly defined) volume enclosed by X. The system (1) is obtained for minimizing
the area A(X) under the volume constraint V (X) = V0, i.e., as the Euler–Lagrange equations for
minimizing the energy

E(X) = A(X) +H0(V (X)− V0), (2)

2



(a) (b)

5 10 15

V

-0.8

-0.6

-0.4

-0.2

0

H

(c) (d) (e)

Figure 1: Preview of solutions (solution branches) we compute. (a) H over V for spherical caps, and sample

solutions, §3.1. The colors indicate u in the last step, yellow>blue, and thus besides giving visual structure

to X indicate the “direction” of the continuation. H is negative since here N is the outer normal. (b)

Enneper minimal surface (a bounded part, with the boundary shown in red), §3.2.3. (c) A liquid bridge

between two circles, with excess volume and hence after a symmetry breaking bifurcation, §3.3.3. (d) A

nodoid with periodic BCs, cut open for plotting, §3.4. (e) A Schwarz P surface, §3.5.1. Samples (b)–(e)

are each again from branches of solutions of the respective problems, see Figures 11, 12,17, and 18 for the

bifurcation diagrams.

and V0 ∈ R typically plays the role of an “external continuation parameter”, while H0, which for
instance describes a spatially constant pressure difference for interfaces between fluids, is “free”.

Following [Bru18], our setting for (1) and generalizations is as follows. Let X0 be a surface
satisfying (1) for some V0 and H0, and define a new surface via X = X0 + uN0, u : X0 → R with
suitable boundary conditions, where N0 : X0 → S2 is (a choice of) the unit normal vector field of X0.
Then (1) reads

G(u, H̃) = H(X)− H̃ = 0 (with boundary conditions if applicable), (3a)

which is a quasilinear elliptic equation for u coupled to the volume constraint

q(u) = V (X)− Ṽ . (3b)

Thus,

after solving (3) for u, H̃, Ṽ we can update X0 = X0 + uN0, H0 = H̃, V0 = Ṽ , and repeat. (4)

Importantly, solution branches of (3) may move back and forth in parameter space (passing through
folds), and hence we do not consider them in “natural” parameterization λ 7→ u(·, λ), but in arclength
s 7→ (u(s), λ(s)) with a (dummy) arclength parameter s ∈ R. Assuming that after spatial discretiza-
tion u ∈ Rn and that we have one free parameter λ ∈ R, the basic idea is as follows. Given a current

3



solution (un, λn) ∈ Rn+1, and a tangent vector τ ∈ Rn to the already computed part of the branch,
we make a predictor (u1, λ1) = (un, λn) + τ , and solve the extended system

H(u, λ) =

(
G(u, λ)

p(u, λ, s)

)
=

(
0

0

)
∈ Rn+1, (5)

where p is used to make s an approximation of arclength on the branch. The standard choice is

p(u, λ, s) := ξ 〈u′0, u(s)−u0〉+ (1−ξ)λ′0(λ(s)−λ0)− (s−s0). (6)

Here 0 < ξ < 1 is a weight, typically chosen as ξ = 1/n, and τ0 is assumed to be normalized in the
weighted norm

‖τ‖ξ :=
√
〈τ, τ〉ξ,

〈(
u

λ

)
,

(
v

µ

)〉
ξ

:= ξ 〈u, v〉+ (1− ξ)λµ. (7)

For fixed s and ‖τ0‖ξ = 1, p(u, λ, s) = 0 thus defines a hyperplane perpendicular (in the inner product
〈·, ·〉ξ) to τ0 at distance ds := s− s0 from (un, λn). Solving (5) (typically by a Newton method) thus
means solving (3) on that hyperplane, which in particular allows to go around folds.

(a) (b)

(X , 
n

λ )
n

Z
Z

ds (step length, in u)

(predictor)

Z
1

n τ

λ

n+1
Z

solution arcX (some norm)

Z =
n

=Z  +ds

(Newton 

corrections)2
3

n1 2 3

u (some norm)

Figure 2: (a) Sketch of arclength continuation algorithm in the Xcont setting. (b) Illustration of the

“solutions” un, which are only meaningful together with Xn−1 via Xn = Xn−1 + unNn−1.

This is illustrated in Fig.2. Recall that the quantity to compute is X = X0 + uN , which gives the
system G(u, λ) = 0 of type (??) for u. The main difference between the Xcont setting and the legacy
setting of pde2path is that for Xcont the solution un in the nth continuation step is only meaningful
together with Xn−1. In particular, after forming the new predictor Z1

n we initialize the Newton–loop
for un+1 with un+1 = 0, as illustrated in Fig. 2(b). Nevertheless we keep writing G(u, λ) = 0 for the
defining equation, i.e., do not explicitly display the base manifold X which changes from step to step.

We generally compute (approximate), e.g., the mean curvature H from a surface FEM discretiza-
tion of X, see §2.3. Alternatively, we may assume a parametrization φ : Ω → R3 of X over some
bounded domain Ω ⊂ R2, and compute, e.g., H from a classical 2D FEM mesh in Ω, although this
is generally more complicated and less robust than using surface meshes, and we mainly review it for
completeness in App. A.3. Both approaches can and usually must be combined with adaptive mesh
refinement and coarsening as X changes. Both can also be applied to other geometric PDEs, also of
higher order, for instance fourth order biomembrane model, see §4. In this case, the analog of (3a)
can be rewritten as a system of (2nd order) PDEs for a vector valued u, and the same ideas apply.

Our work comes with a number of demos which are subdirectories of pde2path/demos/geomtut,
see Table 1. The rather large number of demos is aimed at showing versatility, and, more importantly,

4



is due to our own needs for extensive testing, in particular of various BCs, and of different mesh
handling strategies. Table 2 summarizes acronyms and notation used throughout, and Fig.3 explains
the basic installation steps for pde2path. See also [dWDR+23] for a quick overview of installation
and usage of pde2path, and of all demos coming with pde2path, and [RU19] or [Uec21, Chapters 5
and 6] for getting started with pde2path via simple classical PDEs.

Table 1: Demo directories in pde2path/demos/geomtut. The first two and last three are rather introductory

and not dealing with bifurcations.

directory remarks

spcap1 Spherical caps via surface meshes, introductory demo.
bdcurve Experiments on minimal surfaces with different boundary curves.
enneper Bifurcation from Enneper’s surface, closely related to bdcurve.
nodDBC Nodoids with Dirichlet BCs, including so called liquid bridges.
nodpBC Nodoids with periodic BCs.
TPS Triply Periodic Surfaces, here Schwarz P.

vesicles Closed vesicles as critical points of the Helfrich functional, a 4th order problem.
biocaps Disk type solutions as a variant of vesicles.
biocyl Helfrich cylinders with clamped BCs as a variant of biocaps.

parabol A paraboloid, to test meshing and mesh adaptation
spheres Continuation of spheres, and tests for VPMCF, §A.1.
hemispheres Continuation of hemispheres on a supporting plane, and VPMCF, §A.2.
spcap2 Spherical caps via 2D FEM in the preimage, §A.3.

Table 2: Notations and acronyms; for given X0, quantities of X = X0 + uN0 will also be considered
as functions of u, e.g., A(u) = A(X0 + uN0).

X surface immersed in R3 N = N(X) surface unit normal
A=A(X)=A(u) area of X, resp. of X=X0+uN0 V = V (X) (algebraic) volume, e.g., (17)
H = H(X) mean curvature, e.g., (15) K = K(X) Gaussian curvature
G(u, λ) = 0 generic form of a PDE such as

(3a), λ as a generic parameter
ind(X) index, i.e., number of unstable

eigenvalues of linearization
L = ∂uH(u) Jacobi op. (with BCs) q(u, λ) = 0 generic constraint such as (3b)

BC boundary condition DBC/NBC Dirichlet/Neumann BC
pBC periodic BC PC phase condition
BP/FP branch/fold point CMC constant mean curvature
TPS triply periodic surface TPMS triply periodic minimal surface
MCF mean curvature flow VPMCF volume preserving MCF

Remark 1.1 Here we focus on stationary problems of type (1), which give critical points of the volume
preserving mean curvature flow (VPMCF). A time t dependent 2D manifold X(t) ⊂ R3 deforms by
mean curvature flow (MCF) if, assuming the correct sign for H, i.e., H > 0 for X bounding a convex
body and N the inner normal,

Ẋ = −H(X)N. (8)

This is the L2 gradient flow for the area functional A(X), and can be considered as a quasilinear
parabolic PDE, at least on short times. For closed and compact X there always is finite time blowup
(generically by shrinking to a “spherical point”), and we refer to [Man11] for an introduction to this
huge field, which inter alia heavily relies on maximum (comparison) principles.

5



� Make a directory, e.g., myp2p anywhere in your path. Download pde2path

from [Uec24] to myp2p and unpack, which gives you the pde2path home
directory myp2p/pde2path.

� In Matlab, change into pde2path/ and call setpdepath to make the li-
braries available. (We also recommend ilupack [Bol11], which is not used
here but otherwise in pde2path for large scale problems).

� Test, i.e: change directory into pde2path/demos/geomtut/spcap1, load
the script cmds1.m into the editor (i.e., type edit cmds1.m at the com-
mand line). To get an understanding what command does what, we then
recommend to run cmds1.m in “cell–mode”, i.e., to proceed “cell–by–cell”.

� Find a demo that is closest to the problem you want to study; copy this
demo directory to a new directory myproblem/ or any other name (we
recommend not as a subdirectory of pde2path but somewhere else, for
instance in a subdirectory myproblems of myp2p. In myproblem, modify
the relevant files (usually at least *init and cmds) and explore.

Figure 3: Installation of pde2path (version 3.1), and a “typical” directory structure of myp2p.

The VPMCF reads

Ẋ = −(H(X)−H)N, H =
1

A(X)

∫
X

H dS, (9)

and for closed X conserves the enclosed volume V (X). For non–closed X one typically studies
Neumann type BCs on “support planes”, see, e.g., [Har13], and in most cases the analysis is done
near axisymmetric states such as spheres, spherical caps, and cylinders. In general, the existence and
regularity theory for (9) is less well understood than for (8) due to the lack of general maximum
principles for (9).

Our notion of stability of solutions of (1) (indicated by thick lines in bifurcation diagrams, while
branches of unstable solutions are drawn as thinner lines) refers to (9) if we have an active volume
constraint such as (3b), and to (8) if not, with the exception of the fourth order problems in §4, see
Remark 4.1. Moreover, by ind(X) we denote the number of unstable eigenvalues of the linearization
of (the discretization of) (3), including the constraints (if active).

We also provide very basic setups to numerically integrate (8) and (9) by explicit Euler stepping.
This often has to be combined with mesh adaptation, and in this case A does not necessarily decrease
monotonously for MCF. Moreover, our VPMCF typically conserves V only up to 0.5% error. Thus,
both are not necessarily efficient or highly accurate, but can be used to generate initial guesses for the
continuation of steady states of (1). See §3.1, §3.2.3 (MCF) and §A.1, §A.2 (VPMCF) for examples,
and, e.g., [BNP10, BGN20, BGNZ22] for much more sophisticated numerical algorithms for geometric
flows including (8) and (9), and detailed discussion. c

The remainder of this tutorial is organized as follows: In §2 we review some differential geometric
background, and the pde2path data structures and functions to deal with geometric PDEs. In §3 we
discuss the main 2nd order demos, and §4 deals with the 4th order biomembrane demos vesicles

and biocaps. In §5 we give a summary, and an outlook on ongoing and future work. In §A we
comment on the further demos spheres and hemispheres, which do not show bifurcations but deal
with VPMCF and Neumann type free BCs, and present a classical FEM setup for spherical caps, and
in §B we discuss the biocyl demo. See also [MU24] for supplementary information (movies) on some
of the rather complicated bifurcation diagrams we obtain.

6



2 Geometric background, and data structures

2.1 Differential geometry

We briefly review the geometric PDE setup, and recommend [Des04, Tap16, UY17] for further back-
ground, among many others.

Throughout, let Σ be a 2D connected compact orientable manifold, with coordinates x, y, and
possibly with boundary ∂Σ, and for some α ∈ (0, 1) immersed by X ∈ C2,α(Σ,R3). By pulling back
the standard metric of R3 we obtain the first and second fundamental forms on Σ expressed via X as

g =

(
g11 g12

g12 g22

)
=

(
‖Xx‖2 〈Xx, Xy〉
〈Xx, Xy〉 ‖Xy‖2

)
, h =

(
h11 h12

h21 h22

)
=

(
〈Xxx, N〉 〈Xxy, N〉
〈Xxy, N〉 〈Xyy, N〉

)
, (10)

with unit normal N , which we consider as a field on Σ, or locally on X, which will be clear from the
context. The mean curvature H then is

H =
1

2

h11g22 − 2h12g12 + h22g11

g11g22 − g2
12

, (11)

which is the mean of the minimal and maximal normal curvatures κ1 and κ2. The Gaussian curvature
is

K = κ1κ2. (12)

The sign of H depends on the orientation of X, i.e., on the choice of N . A sphere has positive H iff
N is the inner normal. The Gaussian curvature does not depend on N or any isometry of Σ (Gauß’
Theorema egregium).

A generalization of the directional derivative of a function f to vector fields or tensors is the
covariant derivative ∇Z for some vector field Z on X. For a vector field Y , the covariant derivative
in the j’th coordinate direction is defined as ∇jYi := ∂Yi

∂xj
+ ΓijkYk, and for a 1-form ω we have

∇jωi := ∂ωi

∂xj
− Γijkωk, with the Christoffel symbols Γijk = 1

2
gil(∂xjgkl + ∂xkgjl − ∂xlgjk), where gij are

the entries of g−1, and where we use Einstein’s summation convention, i.e., summation over repeated
indices. The covariant derivative is linear in the first argument, giving a general definition of ∇ZY
with some vector field Z, and if f is a function on X, then

∇Zf = 〈g∇f, Z〉R2 . (13)

Throughout we are dealing with surfaces (2 dimensional manifold immersed into R3), hence the
gradient ∇ is the surface gradient, i.e., the usual gradient ∇Rd in R3 projected onto the tangent space,

∇f = ∇R3f − 〈∇R3f,N〉N, (14)

which later will be needed to (formulate and) implement phase conditions, and, e.g., Neumann type
BCs. This also gives the Laplace Beltrami operator via

∆f = gij∇i∇jf,

which then also applies to general tensors. Using the Gauß–Weingarten relation ∂2X
∂xi∂xj

= Γkij
∂X
∂xk

+hijN

we obtain

∆X = gij∇i∇jX = gij
(

∂2X

∂xi∂xj
− Γijk

∂X

∂xk

)
= gijhijN = 2H(X)N = 2 ~H(X),

7



where ~H(X) is called the mean curvature vector, and

H(X) =
1

2
〈∆X,N〉 . (15)

The area of X is

A(X) =

∫
X

dS, (16)

and, based on Gauß’ divergence theorem, the (algebraic) volume is

V (X) =
1

3

∫
X

〈X,N〉 dS. (17)

If X is a closed manifold bounding Ω ⊂ R3, i.e., ∂Ω = X, and N the outer normal, then V (X) = |Ω| is
the physical volume. If X is not closed, then we typically need to add a third of the flux of ~x through
the open ends to V (X) (see the examples below).

We denote the set of all immersed surfaces with the same boundary γ by

Nγ = {X : X is an immersed surface as above and ∂X = γ}. (18)

The following Lemma states that all immersions Y ∈ Nγ close to X are graphs over X determined by
a function u as Y = X + uN , which justifies our numerical approach (4). The condition that Y has
the same boundary as X in general cannot be dropped, as obviously motions of ∂X tangential to X
cannot be captured in the form X + uN ; see §3.2.1 for an illustration.

Lemma 2.1 [KPP17]. For X ∈ C2,α(Σ,R3) with boundary ∂X = γ there exists a neighborhood

U ⊂ C2,α(Σ,R3) of X such that for all Y ∈ U ∩ Nγ there exists a diffeomorphism φ : Σ → Σ and a

u ∈ C2,α(Σ) such that

Y ◦ φ = X + uN. (19)

Assume that a CMC surface X0 with boundary ∂X0=γ and volume V (X0)=V0 belongs to a family
of CMC surfaces Xt, t ∈ (−ε, ε) for some ε > 0. For example, the spherical caps St from Fig. 1(a)
with the boundary γ = {(x, y, 0) ∈ R3 : x2 + y2 = 1} are a family of CMC immersions fully described
by the height t ∈ R. By Lemma 2.1, the parameter t uniquely defines u in a small neighborhood, i.e.,
Xt = X + uN , and the system of equations for u reads

H(u)−H0 = 0, (20)

for some H0 ∈ R, where we abbreviate H(u) = H(X + uN), etc. If we consider variational vector

fields at X0 in the form ψ =
∂Xt

∂t
|t=0 = uN , and additionally assume that Xt ∈ Nγ, then necessarily

u|∂X = 0, Dirichlet boundary conditions (DBCs). (21)

Such Xt are called admissible variations in [Lóp13, §2.1], and we have the following results on deriva-
tives of A and V .

Lemma 2.2 [Lóp13, §2.1] For an admissible one parameter variation Xt of X ∈ C2,α(Σ) and vari-

ational vector fields ψ = ∂X
∂t

∣∣
t=0

= uN the functions t 7→ A(t) = A(Xt) and t 7→ V (t) = V (Xt) are

8



smooth, and

V ′(0) =

∫
X0

u dS, A′(0) = −2

∫
X0

H0u dS, and A′′(0) = −
∫
X0

(∆u+ ‖S0‖2u)u dS, (22)

where ‖S0‖2 = 4H2
0 − 2K0 with the Gaussian curvature K0. Thus

d

dt
H(Xt)

∣∣∣
t=0

= −∆u− ‖S0‖2u, (23)

and the directional derivative (23) is given by the self-adjoint Fredholm operator L on L2(X0) with

L = ∂uH(0) = −∆− ‖S0‖2, with DBCs. (24)

Remark 2.3 a) The operator in (24) without BCs is called Jacobi operator, and a nontrivial kernel
function is called a Jacobi field on X = X0. An immersion X with a Jacobi field satisfying the BCs is
called degenerate. The Fredholm property allows the use of the Crandall-Rabinowitz bifurcation result
[CR71]: Given a C1 branch (t0−ε, t0+ε) 3 t 7→ Xt, ifXt is non–degenerate for t ∈ (t0−ε, t0)∪(t0, t0+ε),
and if at t0 a simple eigenvalue t 7→ µ0(t) crosses transversally, i.e., µ(t0) = 0, µ′0(t0) 6= 0, then a branch

X̃t bifurcates at t0.
See also [KPP17] for a formulation via Morse indices ind(Xt)=number of negative eigenvalues of

L, counted with multiplicity, used to find bifurcation points in families of nodoids, which we shall
numerically corroborate in §3.3.2. An equivariant version can be found in [KPS18, Theorem 5.4],
applied to bifurcations of triply periodic minimal surfaces, for which linearizations always have a
trivial 5 dimensional kernel due to translations and rotations, see §3.5 for numerical illustration. See
also [GS02, Hoy06, Kie12] and [Uec21, Chapters 2 and 3] for general discussion of Crandall–Rabinowitz
type results, and of Krasnoselski type results (odd multiplicity of critical eigenvalues, based on degree
theory), including equivariant versions.

b) Besides the (zero) DBCs (21) corresponding to a fixed boundary ∂X = γ, we shall consider so
called free boundaries of Neumann type. This means that ∂X ⊂ Γ, where Γ ⊂ R3 is a fixed 2D support
manifold (e.g., a plane), and that X intersects Γ orthogonally. Following [Ros08], we summarize the
second derivative of A in this case as follows: if hΓ is the second fundamental form of Γ, and ψ = uN ,
then N |∂X is tangent to Γ, such that hΓ(N,N) is well defined, and

A′′(0) = −
∫
X0

(∆u+ ‖S0‖2u)u dS −
∫
∂X0

hΓ(N,N)u2 ds. (25)

Note that the term
∫
∂X0

. . . in (25) vanishes if Γ is a plane and hence hΓ ≡ 0.
c) The formulas (22)–(24) translate to our discrete computational setting in a straightforward way,

see §2.3.1. However, given some X0, we compute X = X0 +uN0 via Newton loops for iterates un with
derivatives (of V,A and H) evaluated at Xn = X0 + unN0, and hence the formulas are accordingly
adjusted. c

2.2 Default data and initialization of a pde2path struct p

Before explaining the modifications needed for the geometric problems, we briefly review the standard
setup of pde2path, and as usual assume that all problem data is contained in the Matlab struct p

as in problem. In the standard FEM setting this includes the object p.pdeo (with sub–objects fem

and grid), which provides methods to generate FEM meshes, to code BCs, and to assemble FEM
matrices M (mass matrix) and K (e.g., Laplacian), or directly a rhs G. Typical initializations and first
continuation steps in the FEM setup (for semilinear problems) then run as follows, where steps 1,2
and 5 are usually combined into an init-function.

9



1. Call p=stanparam() to initialize most fields in p with default values (see source of stanparam.m
for default fields and values).

2. Call a pdeo constructor, for instance p.pdeo=stanpdeo2D(p,vararg), where here and in the
following vararg stands for variable arguments.

3. In a function oosetfemops (in the current directory), use p.pdeo.assema to generate a mass
matrix p.mat.M and a stiffness matrix p.mat.K (typically corresponding to −∆), and possibly
further FEM matrices, e.g., for BCs.

4. Use p.mat.M and p.mat.K in a function r=sG(p,u) to encode the PDE, and optionally the
Jacobian in Gu=sGjac(p,u) (usually recommended, but numerical Jacobians are also supported).
The input argument u contains the “PDE unknowns” u and the parameters appended at the
end. If required by the problem, similarly create a function q=qf(p,u) for the constraints as in
(3b), and a function qu=qder(p,u) for the derivatives of qf.

5. Initialize p.u with a first solution (or a solution guess, to be corrected in a Newton loop).
6. Call p=cont(p) to (attempt to) continue the initial solution in some parameter, including bi-

furcation detection, localization, and saving to disk.
7. Call p=swibra(dir,bpt,newdir) to attempt branch switching at branch point bpt in directory

dir; subsequently, call p=cont(p) again, with saving in newdir.
8. Perform further tasks such as fold or branch–point continuation; use plotbra(dir,pt,vararg)

to plot bifurcation diagrams, and plotsol(dir,pt,vararg) to plot sample solutions.

Remark 2.4 The rhs, Jacobian, and some further functions needed/used to run pde2path on a prob-
lem p, are interfaced via function handles in p.fuha. For instance, you can give the function encoding
your rhs G any name, e.g., myrhs, with signature res=myrhs(p,u), and then set p.fuha.sG=@myrhs,
but you can also simply keep the “standard names” sG and sGjac and encode these in the respective
problem directory. For many handles in p.fuha there are standard choices which we seldomly mod-
ify, e.g., p.fuha.headfu=@stanheadfu (the header for printouts). Functions for which the “default
choice” is more likely to be modified include, e.g.,

� p.fuha.outfu=@stanbra, signature out=stanbra(p,u), branch output;
� p.fuha.ufu=@stanufu, signature [p,cstop]=refufu(p,brout,ds), “UserFUnction”; this is

called after each successful continuation step, and in its default setting just gives printout and
checks if the (primary) continuation parameter is still in the prescribed range. In some of the
demos we modify stanufu to a function refufu which, e.g., checks the mesh-quality and adapts
the mesh if necessary.

� p.fuha.lss=@lss, signature [x,p]=lss(A,b,p), linear systems solver x = A−1b.
Other options include, e.g., lssbel (bordered elimination) and lssAMG (preconditioned GMRES
using ilupack [Bol11]).

During continuation, the current solution is plotted via plotsol(p), and similarly for a posteriori
plotting (from disk). The behavior of plotsol is controlled by the subfields of p.plot (and possible
auxiliary arguments), and if p.plot.pstyle=-1, then plotsol immediately calls a function userplot,
to be user–provided. Such user functions naturally must be in the Matlab–path, typically in the
current problem directory, which Matlab scans first when looking for a file. We sometimes also
exploit this to overload pde2path library functions that need modifications for a given problem. c

2.3 pde2path setup for discrete differential geometry

2.3.1 Discrete differential geometry FEM operators

We recall a few discrete differential geometry operators from [MDSB03, Jac13], and shall use imple-
mentations of them from the gptoolbox [Jac24]. Given a triangulation X ∈ Rnp×3 (point coordinates)
and tri ∈ Rnt×3 (triangle corner indices) of X, and the piecewise linear element “hat” functions

10



φi : X → R, φi(Xj) = δij, we have∫
∇φi∇φj dS = −1

2
(cotαij + cot βij) =: Lij, (26)

where αij and βij are the angles opposite the edge eij from point Xi to point Xj. For u : X → R, u =∑np

i=1 uiφi, this yields the FEM stiffness matrix Lu corresponding to the Laplace–Beltrami operator
−∆u weighted by the mass matrix M . In [MDSB03] it is explained that for geometric problems, with
possibly rather distorted triangles, instead of the full mass matrix M full with

M full
ij =

∫
φiφj dS, (27)

the Voronoi mass matrix

M = diag(A1, . . . , Anp), (28)

should be expected to give better approximations, see also Fig. 4. Here, Ai =
∑ni

j=1Am(Tj) is the area
of the Voronoi region at node i, where Tj, j = 1, . . . , ni are the adjacent triangles, and Am(T ) is a
“mixed” area: For non–obtuse T , Am(T ) is the area of the rhomb with corners in Xi, in the midpoints
of the edges adjacent to Xi, and in the circumcenter of T , while for obtuse T we let Am(T ) := |T |/2
if the angle at Xi is obtuse, and Am(T ) := |T |/4 else. Altogether, this yields the approximation

−∆u = M−1Lu, (29)

where M from (28) is diagonal, and L and M are evaluated very efficiently via cotmatrix and
massmatrix from the gptoolbox, see Table 3.

However, as we always consider our problems such as (3) in weak form, we let H = −1
2
〈LX,N〉,

where for the vertex normals N we can use per vertex normals, and the weak form of, e.g., H−H0=0
then is

−〈LX,N〉 − 2MH0 = 0, (30)

again with Voronoi M . Alternatively, we use [k,H,K,M]=discrete curvatures(X,tri), where K and
k = (k1, k2) are the (weighted, i.e., weak) discrete Gaussian and principal curvatures per vertex; these
are computed from a discrete version of the Gauß–Bonnet theorem.1 Namely

K(Xi) = 2π −
ni∑
j=1

θj, (and k1 = H +
√
D and k2 = H −

√
D), (31)

where the θj are the angles at Xi, and where the discriminant D = H2 −K (which is non-negative
in the continuous case) in the discrete case is set to 0 if negative. An approximations of K is then
obtained (cheaply, since M is diagonal) from

K = M−1K. (32)

For notions of convergence of discrete differential geometry objects and operators we refer to
[War08], which considers approximations of a smooth manifold X by shape regular triangulations Xh

1On a manifold X with boundary ∂X we have
∫
X
K dS+

∫
∂X

κg ds = 2πχ(X) where χ(X) is the Euler characteristic
of X, and κg is the geodesic curvature of ∂X. This will play an important role for the biomembranes in §4. The discrete
formula (31) is used at interior points of X, while at boundary points Xi it is modified to K(Xi)− π.

11



in the sense of Hausdorff distance dist(Xh,X )→ 0 as h→ 0. Here and in the following h = max
T∈tri

h(T ),

where h(T ) means the maximal edge length of triangle T , and shape regular means that the mesh
distortions

δmesh := max
T∈tri

(h(T )/r(T )) (max edge-length over in–radius), (33)

are bounded.2 Then, the following convergences are equivalent:

(a) normals ‖N−Nh‖∞ → 0,

(b) volumes (area) ‖ dS− dSh‖∞ → 0,

(c) Laplace-Beltrami operators ‖∆−∆h‖op → 0,

(34)

where ‖ · ‖op is the norm in L(H1
0 (X), H−1(X)) and dSh and ∆h in (34) are to be understood in a

metric pullback sense. A fourth notion of convergence equivalent to those in (34) and in fact used for
the proof of the equivalence in (34) is metric convergence (suitably defined). In particular, in general
the discrete mean curvature Hh obtained from Hh(Xh) = 1

2
〈∆hXh, Nh〉 only converges as a functional

to H(X), not as function. A famous counterexample that (hence) none of the convergences from
(34) follows from dist(Xh, X) → 0 alone is the lantern of Schwarz.3 Nevertheless, while numerical
experiments in [Xu04] show that a variety of natural schemes for ∆ in general do not converge, [Xu04,
Theorem 2.1] states that with Voronoi M and at valence six nodes (six neighbors)

M−1L = ∆ +O(h2); (35)

see also [XX09] for function space convergence as h→ 0 of various schemes for Hh and Kh.
In Fig.4 (and Fig. 5) we give an illustration of the (function space) error and convergence be-

havior of our discrete H = 1
2
M−1 〈LX,N〉 based on (29), and of K from (32) on discretizations of

the unit sphere obtained from subdivision and projection, with 2 (a) resp. 3 (b) subdivisions. See
geomtut/hemispconv/ for the Matlab source. Here N=outer normal, hence H = −1 and K = 1
are the exact values, and the two left columns indicate the convergence for H, but also that the node
valence plays a role on these otherwise very regular meshes.4 However, the last column shows that
using M full in this example, i.e., Hfull = 1

2
M full−1 〈LX,N〉 gives a significant error (and similarly in

K), and in fact no convergence at the valence 5 nodes.
Figure 5(a) shows the pointwise convergence of H and K (away from the boundary) for a hemi-

sphere discretized by subdivision and projection with j=2, . . . , 5 steps; here, “‖H + 1‖∞, α = −1.03”
in the legend means ‖H + 1‖∞ ∼ Cnα with α the best linear fit for the log–log plot. Since n ∼ h−2,
(a) shows that here (35) also holds at the valence 5 nodes, and that also for K we get the same
convergence. In (b) we show the data for the L2 norm, in which Hfull and Kfull also converge, but
with much slower rates than H and K.

Finally, (c) shows a different experiment: after initialization with the hemispheres from (a), we
solve the discretized problem H + 1 = 0 with DBCs ∂X = S1, i.e., u = 0 for the nodes associated
to ∂X, and plot the deviation of X from the spherical shape. The convergence rate for ‖|X| − 1‖
is approximately n−5/3, both for X and Xfull (obtained with M full), and in both ‖ · ‖∞ and in ‖ · ‖2.
Thus, while Hfull is in general not accurate, here the solution Xfull is. In any case, in the following

2δmesh will also be one of our criteria for mesh adaptation in the numerics; for an equilateral triangle (best case)
δmesh = 2

√
3 ≈ 3.46, and for a “standard” triangle (right angled isoceles), δmesh ≈ 4.83. As a rule of thump, meshes

with δmesh ≤ 10 have little distortion, and δmesh ≤ 50 is still OK. See also [She02] for a very useful discussion of mesh
quality (in the planar setting, and in 3D).

3In a nutshell, this is a 2D version of un(x) := 1
n sin(nx)→ 0 in L∞ without convergence of u′n(x) = cos(nx) in any

proper function space, but u′n(x)→ 0 in the sense of distributions.
4Euler’s polyhedron formula yields that triangulations with all nodes of valence 6 do not exist, see, e.g., [BF67].

12



(a)

(b)

Figure 4: Discrete H (and K) on (coarse) meshes of the unit sphere (plots cropped). Two left columns:

Convergence for H = −1
2M

−1 〈LX,N〉 and K = M−1K with Voronoi M . Right column: No convergence for

H (and similar for K) at valence 5 nodes when using M full.

we always use the Voronoi mass matrix M and generally recommend this. See also Example 2.7 for
another convergence experiment, where we also explain different options for mesh refinement, and
where we display some lingering effects of the valence of nodes on solution accuracy.

2.3.2 The pde2path library Xcont

Table 3 lists the main (for us) functions from the gptoolbox [Jac24], which we interface by functions
from the pde2path library Xcont. The most important new data for continuation of a surface X are
p.X and p.tri, which essentially replace the data in p.pdeo.grid. The most important switch, which
also modifies the behavior of some standard pde2path functions, is

p.sw.Xcont =


0 legacy setting (no X),

1 switch on X–continuation (default),

2 refined setting for X–continuation.

(36)

The difference between p.sw.Xcont=1 and p.sw.Xcont=2 is as follows: For p.sw.Xcont=1 we update
p.X after convergence of the Newton loop, i.e., set p.X=p.X+u*N0, p.up=u (for plotting, see Remark
2.5(b)), and u(1:p.np)=0 (zeroing out u for the next continuation step). For p.sw.Xcont=2 we
do all this after each successful Newton-step, such that we obtain slightly different (more accurate)
Jacobians as we also have a new N . A side-effect is that the last update in the Newton loop and
hence the p.up may be very small and will in general not represent the “direction” of continuation.
For p.sw.Xcont=1, p.up will contain the complete step, and therefore we choose this as default. For
the spectral computations (bifurcation detection and localization) p.sw.Xcont=1 vs p.sw.Xcont=2
makes no difference as all spectral computations are done after convergence of the Newton loops, i.e.,
after the final update of p.X.

Some main functions from the pde2path library Xcont are listed in Table 4, and can be grouped
as follows:

1. Functions directly interfacing the gptoolbox such as N=getN(p) which in the default setting
just calls N=per vertex normals(p.X,p.tri). These are meant as easy–to–change interfaces,
as for a given problem it may be desired to, e.g., change the orientation of X. For this, make a

13



(a) (b) (c)

Figure 5: (a,b) Convergence rates for H and K on discretized hemipsheres. (c) Convergence rates for the

spherical deviation |X| − 1 of solutions of H + 1 = 0.

Table 3: Main functions used from [Jac24] and [Sch22, FS21], and some small additions/mods. Here
X∈Rnp×3 are the point coordinates of the triangulation, and tri ∈ R3×nt the triangulation as rows of
point numbers of triangles.

function remarks

N=per vertex normals(X,tri) normals; should be interfaced as N=getN(p,X), see Table
4 to possibly flip sign at one place;

L=cotmatrix(X,tri) cotangent discrete Laplace–Beltrami
M=massmatrix(X,tri,type) mass matrix, with type ’full’, ’barycentric’ or ’voronoi’.
K=discrete gaussian curvature(X,tri) Gaussian curvature K.
[k,H,K,M]=discrete curvatures(X,tri) principal curvatures k = (k1, k2), and H, K, M .

[X,tri,DBC,NBC] refinement, with DBC/NBC the Dirichlet/Neumann
=TrefineRGB(X,tri,DBC,NBC,elist) boundary nodes, and elist the triangles to refine. In-

terfaced via p=refineX(p,sig); where sig is the usual
factor of triangles to refine, and where after refinement
p.u and p.tau are interpolated to the new mesh. See
also TcoarsenRGB, with similar signature.

local copy of getN.m and there set N=-per vertex normals(p.X,p.tri).
2. “Template” functions to compute V (u) (corresponding to V (X) = V (X0 + uN0) in (17)), and
A(u) from (16), and wrappers to use them in constraints such as q = qfV(p, u) = V (u) − V0,
and their derivative, such as qu = qjacV(p, u) = ∂uV . (Since V is a scalar function, here we use
“jac” in a loose sense.)

3. Template convenience functions such as pplot for plotting p.X, and updX for updating X =
X0 + uN0, cf. (4), and overloads of pde2path library function adapted to X continuation, e.g.,
getGupde, and a prototype oosetfemops, which for X–continuation usually should only serve
as a dummy needed by other pde2path functions.

4. Functions related to mesh handling such as refineX, coarsenX and degcoarsenX, and associated
elements–to–refine–selectors such as e2rsA (based on triangle areas) and e2rshape (based on
triangle shapes). Additionally there are retrigX and moveX, based on [PS04], see Remark 2.6.

5. The template geomflow for geometric flows such as MCF, interfaced in p.fuha.flowf.
All of these functions, in particular from 2. and 3. are “templates”; for a given problem it may be
necessary or useful to make local copies of some of these functions in the problem directory and
change them there. Additionally, there is convenience function p=stanparamX(p), which (re)sets
some pde2path parameters to typical values for X–continuation. Another important interface to the
gptoolbox is

14



Table 4: Main functions from the library Xcont; see sources for argument lists and detailed comments,
and Remark 2.5 for further comments.

function remarks

p=stanparamX(p) convenience function to set pde2path parameters to “standard” values for X–
continuation; to be called after p=stanparam() during initialization.

getN interface to per vertex normals; to flip orientation, make local copy with
function N=getN(p,X); N=-per vertex normals(X,p.tri); end

getA, getV get area A and volume V according to (16) and (17).
qV, qjacV V as a constraint q for continuation, and its derivative ∂uq.
qA, qjacA A as a constraint q for continuation, and its derivative ∂uq.
c2P triangle center to point (nodes) interpolation matrix.
cmcbra default branch output in our demos below.

pplot plot of p.X, usually called from userplot; see Remark 2.5b).
oosetfemops usually only needed as a dummy (since called by pde2path library functions).
updX update p.X after successful Newton steps.
plotHK given p.X, plot H(X) and K(X) (mostly for checking).

e2rsA, e2rsAi element–to–refine–selector choosing triangles with large areas; e2rsAi chooses trian-
gles with small areas, intended for coarsening.

e2rsshape1 Select triangles according to (??). See also e2rsshape*.
meshqdat mesh quality data, see (38).
refineX mesh refinement of p.X; selecting triangles via p.fuha.e2rs and calling TrefineRGB

(or Trefinelong if p.sw.rlong==1 for bisection of only longest edges of triangles).
coarsenX coarsening of p.X, same syntax as refineX; i.e., selecting triangles via p.fuha.e2rs.

Inverse to refineX, as only triangles from prior refinement can be coarsened (to their
common ancestors).

degcoarsenX coarsening of mesh by removing degenerate triangles (via gptoolbox).
retrigX retriangulation of X, based on [PS04]; using the adjacency in p.trig to generate a

new (Delauney) triangulation of X while keeping the surface structure.
moveX retriangulate and move points of X based on [PS04] and the associated code.

geomflow simple explicit time integrator for Ẋ=fN , where f=p.fuha.flowf, e.g., f(X)= −H
for mean curvature flow, implemented in mcff (with DBCs).

6. getM(p), which for scalar problems should call M=massmatrix(p.X,p.tri,’Voronoi’), and
for vector valued problems should build the system mass matrix from such “scalar” M, cf. §4.
However, for compatibility with the non–X–setting, getM is not part of Xcont, but needs a local
copy in each (X–continuation) problem directory.

Remark 2.5 a) As is, out=cmcbra(p,u) puts the data

out=[pars;V;A;E;meshq] (37)

into out, where pars of length m = length(u)− p.nu is the (user defined) parameter vector of the
problem, V and A are volume and area of X, and E = A + par(1)V , cf. (2), which assumes that H0

is at par(1), and is an active continuation parameter. Next, meshq = (δmesh, amax, amin, hmax, hmin)
computed in meshq=meshqdat(p), with δmesh the mesh distortion (33), and amax and amin are the
max and min of the triangle areas, and hmax,min are the largest and smallest edge lengths in the
triangulation.

out=p.fuha.outfu is appended to bradat(p,u)=[count;type;ineg;lam;err;L2]5, and we list

5six values, where count=step-counter, type ∈ {0, 1, 2, 3} (regular point, BP, FP, Hopf point), ineg=number of
unstable eigenvalues (if p.sw.spcalc > 0), lam=value of primary continuation parameter, and err and L2 are not
meaningful in the Xcont setting, see bradat.m for details)

15



the component c for branch plotting for p.fuha.outfu=@cmcbra (with m the number of parameters):

c 1. . .m m+1 m+2 m+3 m+4 m+5 m+6 m+7 m+8

meaning pars V A E δmesh amax amin hmax hmin
. (38)

Thus, to plot, e.g., V over the active bifurcation parameter from a computed branch b1 into figure fnr,
use plotbra(b1,fnr,m+1,varargin), where varargin gives many options for colors, labels, etc. Simi-
larly, to plot δmesh, use plotbra(b1,fnr,m+4,varargin). Moreover, c in plotbra(b1,fnr,c,varargin)

can be a vector, and to, e.g., plot δmesh over V use c=[m+1, m+4].
b) pplot(p,fignr) (or pplot(dir,pt,fignr), where p is loaded from dir/pt) colors p.X by p.up,

which contains u from the last continuation step and hence codes (together with N) the “continuation
direction” (if p.sw.Xcont=1), or just the last Newton update (if p.sw.Xcont=2), see (36). The
behavior of pplot can further be controlled by settings in the global structure p2pglob.6 For instance,
p2pglob.tsw controls the titles, e.g., (V,H) for tsw=1, and (A,H) for tsw=2, which assumes that
the parameters are ordered as (H,V,A). For flexibility, if tsw > 4, then pplot searches the current
directory for a function mytitle to generate a title, see, e.g., demo geomtut/enneper. Again, pplot
is a template, if necessary to be modified in the problem directory for customized plots, but all demos
from geomtut/ only use the given library version.

c) In all demos below we use indices p.idx and p.idN of boundary points to set boundary con-
ditions. In this, p.idx should be thought as points for Dirichlet BCs and associated to p.DBC (the
corresponding edges, updated in refineX and coarsenX), and p.idN as Neumann BCs with edges
p.NBC. All of these can also be empty (for instance if X is closed, or has only one type of boundary),
and again, the use of p.idx, p.idN, p.DBC and p.NBC should only be seen as a template, for instance
to be modified if a given problem has several different boundaries. c

Remark 2.6 a) For surface meshes (X, tri), mesh adaptation, i.e., refinement and coarsening, seems
even more important than for standard (non–parametric) problems, because well behaved initial
triangulations (well shaped triangles of roughly equal size) may deteriorate as X changes. The case
of growing spherical caps in Fig. 1(a) is rather harmless as triangle sizes grow but shapes stay intact,
and can easily be dealt with by refinement of the largest triangles. For this, in e2rsA we simply order
the nt triangles of tri by decreasing size, and from these choose the first bσntc for refinement by
refineX, i.e., we generally use σ = p.nc.sig as the parameter for the fraction of triangles to refine.
The refinement can be either done as RGB if p.sw.rlong=0, or by refining only the longest edges
of the selected triangles if p.sw.rlong=1. RGB is generally better if triangle shapes are crucial, but
may result in rather long cascades to avoid hanging nodes (such that σ is only a lower bound for the
fraction of triangles actually refined). Refine-long gives more control as only the selected triangles are
bisected (plus at most one more triangle for each one selected), but may lead to obtuse triangles, and
it seems that as for standard FEM very obtuse triangles are more dangerous than very acute triangles.
A short computation shows that, e.g., for a right–angled triangle refine–long increases δ = h/rin by
45%; however, this can often be repaired by combining refine–long with retrigX, see b). See also
[She02] for a very useful discussion of mesh quality (in the planar setting, and in 3D).

Conversely, coarsenX can be used to coarsen previously refined triangles, again from a list gener-
ated by p.fuha.e2rs, which should be reset from the one chosen for refinement. For instance, e2rsAi
selects the bσntc triangles of smallest area, but these have to be from the list of previously refined
triangles.

degcoarsenX works differently: It aims to collapse short edges to remove acute triangles, defined
by s−r > 2R, where s, r, R are the semiperimeter, the inradius, and the circumradius for each triangle.
For us, this is mainly important for small acute triangles (which develop when X bulges in, i.e., at

6This turned out to be convenient, i.e.: When plotting from file we very often want to change the look of plots
“globally”, i.e., without first loading the point and then adapting settings.

16



necks), and hence before coarsening we compute a size parameter ε = |Tnc | where we assume the
triangles ordered by increasing size and let nc = bσcntc, with σc = p.nc.sigc a user chosen fraction
(upper bound) of triangles to coarse. Then, only acute triangles of size |T | ≤ ε are refined. Both,
refineX and degcoarsenX can be told to not refine/coarsen boundary triangles, which is useful for
the case of periodic BCs.

b) We also provide two small modifications of (actually interfaces to) code from [PS04]. In
retrigX.m we generate a new (Delauney) triangulation of X, keeping intact the surface structure
of X. This is in particular useful if X has been obtained from long refinement, which typically results
in nodes having 8 adjacent triangles (valence 8), while “standard” triangulations (and the output of
retrigX) have valence 5 and 6, which generally seems to result in more robust continuations. In
moveX we combine retrigX with motion of the points in X due to “truss forces” of the triangulation,
aimed at more uniform edge lengths. Due to the similarity of the triangulation truss forces and surface
tension, this works best for minimal surfaces (H=0), or otherwise for surfaces with small |H|.

c) In refineX, coarsenX, and degcoarsenX, the last solution u and in particular the u component
of the branch tangent τ are interpolated to the new X, but the PDE G(u, λ) = 0 is not directly solved
to correct the refinement/coarsening/interpolation error. In simple cases, if any of the above functions
is called during continuation, for instance in a “REFinement–User–FUnctions” refufu, this is done in
the next continuation step; see refufu and refufumaxA in the demo spcap1, §3.1. In more complicated
cases, e.g., when more than one of refineX, coarsenX, and degcoarsenX are called for refinement,
it may be advantageous to solve G(u, λ) = 0 for correction between the different calls; see refufu

in the demo vesicles, §4.1. The same applies in principle to retrigX and moveX, which keep the
number of mesh–points fixed but deliberately also change the (discrete) system G(u, λ) = 0. However,
in our demos we call retrigX and moveX in direct combination with one of refineX, coarsenX or
degcoarsenX, and hence the error introduced by retrigX and moveX is taken care of automatically
by the subsequent solve. c

Example 2.7 As an example for different meshing and mesh refinement options, in the demo parabol

we consider the (non–parametric) quarter of a paraboloid

P = {z = za(x, y) = x2/a2 + y2/b2 : (x, y) ∈ Q = (0, 1)2}.

The mean curvature of P is HP (x, y) =
a2 + b2 + 4x2/a2 + 4y2/b2

a2b2(1 + 4x2/a4 + 4y2/b4)3/2
, and hence we want to solve for

X the Dirichlet problem

H −HP = 0, z = zP for (x, y) ∈ ∂Q (39)

We start with a coarse initial mesh (np = 36 points) in the x–y–plane, mapped to R3 as (x, y, z(x, y)).

This is not a solution of the discrete problem (39) due to the discretization error of the numerical H

(see Fig.4 and Fig.5). Hence we want to solve (39) and use mesh adaptation to improve the approx-

imation, which we measure as z − za (in different norms). In Fig. 6(a–c) we first show three options

for meshes. In (a), we have a default triangle mesh in the x–y plane, while (b) shows a “criss–cross”

mesh obtained from (a) by one uniform “refine–long” step. In contrast to (a), (b) is symmetric (in the

x–y plane) wrt reflection in x and y, and such meshes have proven useful for legacy PDE problems

in the plane (and in 3D), where it is sometimes crucial to have the mesh reflect symmetries of the

PDE, see [Uec21, §4.1.1]. From the Xcont point–of–view, a salient feature of (b) is that it alternates

valence 4 and valence 8 points in the bulk, which always happens when applying refine-long to a

valence–6–triangle mesh. In (c) we have the same points as in (b) but applied retrigX, which here

converted most of the bulk nodes back to valence 6.

17



We now use the mesh from (a) and three different iterative “adaption-solve” strategies Sj, j = 0, 1, 2

to approximate the known solution (x, y, za(x, y)) of (39). In S0 we use M full and refine-long of the

σ = 1/2 largest triangles. S1 is like S0 but with M = MVoronoi instead of M full, and S2 is S1 but with

retrigX after each refinement. In (d,e) we show the errors for S0 and S2 after one step (S1 is quite

similar to S0 here), with naturally refinement in the top half of the initial mesh. The main message

is that the main error sits at the valence 4 and 5 nodes, and that refine–long followed by retrigX

introduces a layer of valence 5 nodes between areas that have/have not been refined. As shown in (f),

S2 is best for the given simple problem, but the overall convergence (in ‖ · ‖∞) of the three strategies

is similar, and we have also have the same rate ≈ −1 in ‖ · ‖2. c

(a) (b) (c)

(d) (e)

(f)

Figure 6: Example 2.7, geomtut/parabol/cmds1.m. Initial mesh (a), different mesh–refiments and local

effects on error (b)–(e), but similar overall convergence (f).

3 Second order example implementations and results

Our demos are meant to show how to set up different geometric bifurcation problems, in particular
with different BCs. They mostly deal with classical minimal or more generally CMC surfaces, for
instance the Enneper and Schwarz–P surfaces, and so called nodoids (including physically relevant
liquid bridges). Many demos start with CMC surfaces of revolution, and our main interest then
are bifurcations breaking the rotational symmetry. The minimal surfaces in §3.2 are motivated by
Plateau’s problem of soap films spanning a given wire, and in §4 we consider 4th order problems
obtained from the Helfrich functional.

All demos come with a number of function files namely (at least, with * a placeholder, usually to
be replaced by a short problem name, cf. §2.3): sG*.m describing the rhs of the problem; *init.m for
initialization; userplot.m and getM.m for technical reasons (downward compatibility). Additionally,
in some demos we overload functions from libs/Xcont, e.g., cmcbra.m for branch output. Finally,
there are script files cmds*.m with * a number if there is more than one script. In our descriptions of
the first demos, we give tables listing the used files and their purpose (starting with the scripts), and

18



we give a few listings of (parts of) pertinent files to discuss important points. This becomes less for
the later more advanced demos, for which we rather put more comments into the m–files themselves.

3.1 Spherical caps

We start with the continuation in volume V of spherical caps over the unit circle γ in the x–y plane,
as previewed in Fig. 1(a). It is known [ALP99], [KPP15, §2.6] that no bifurcations occur, and hence
this only serves as an introductory toy model. Table 5 gives an overview of the used files, and Listings
1–2 show the initialization scinit.m, the rhs sGsc.m, and the first script cmds1.m. The BCs are
∂X = γ = {(x, y, 0) ∈ R3 : x2 + y2 = 1}, which since they hold for the initial unit disk translate into

u|∂X = 0. (40)

Remark 3.1 a) We can as well continue directly in H, without any constraints, and starting from the
disk again obtain the same branch (see lines 14,15 of cmds1.m). Our setup in cmds1.m is motivated by
applications, where typically the volume is the external parameter. I.e., the setup is a template how to
use the volume (qfV) or area (qfA) constraints, together with the derivatives (qjacV and qjacA). Note
that p.nc.ilam=[2,1] for using V as the primary active parameter in cmds1, and p.nc.ilam=[3,1]

for using A, while H = par(1) is a secondary active parameter in both cases.
b) Only the active continuation parameters are updated in p.u; thus, when continuing only in H,

say, then to plot, e.g., A over H we cannot choose p.plot.bpcmp=3 (the parameter index of A), but
must take p.plot.bpcmp=3+2=5. This is because the computed A is put second after the parameters
in the output function cmcbra, and here we have three parameters (H,V,A). But again, A = par(3)
is only updated if 3 ∈ p.nc.ilam, i.e., if A is an active parameter. c

Table 5: Files in pde2path/demos/geomtut/spcap1; the last two are typical examples of (small) local
mods of library functions.

cmds1.m continuation in (V,H) and in (A,H), respectively.
cmds2.m, cmds3.m tests of different mesh refinement options, and MCF tests.
getM.m standard (Voronoi) mass matrix.
scinit.m Init, data stored in p.u (including computed H,A and V ), and in p.X and p.tri.
sGsc.m, scjac.m rhs based on (26), and Jacobian based on (23).
mcff.m mean curvature flow rhs f ; problem dependent via choice of getN.

cmcbra.m local copy and mod of library function cmcbra.m to put error e(X) (42) on branch.
refufu.m local copy and mod (and renaming) of stanufu.m to do adaptive mesh refinement

based on e(X); “switched on” by setting p.fuha.ufu=@refufu.
coarsufu.m similar to refufu.m, used for mesh coarsening of decreasing caps;

1 function p=scinit(nx,par) % spherical cap , init

p=stanparam (); p=stanparamX(p); % set stanparam , adapt to X; then reset some

p.fuha.sG=@sGsc; p.fuha.sGjac=@scjac; p.sw.spcalc =0; p.sw.bifcheck =0;

pde=diskpdeo2(1,nx ,round(nx/2)); % disk preimage discretization , pde -object

% not stored , only p.DBC , p.tri and p.X (generated below) used subsequently

6 p.np=pde.grid.nPoints; p.nu=p.np; p.nt=pde.grid.nElements; % store dimensions

p.sol.xi=1/p.nu; p.n0=p.np; % u-vs-lam weight , initial mesh size (for coarsening)

p.nc.neq=1; p.sw.jac=0; % here , for simplicity , numerical Jacs

po=pde.grid.p; x=po(1,:) ’; y=po(2,:) ’; u=0* ones(p.np ,1); % set ICs

p.u=[u; par]; p.X=[x,y,0*x]; p.tri=pde.grid.t(1:3 ,:) ’; % store initial X and tri

11 p.DIR=pde.grid.e(1:2 ,:) ’; p.idx=unique(p.DIR(:)); % edges , and points for BCs

p=oosetfemops(p); p.plot.auxdict ={’H’,’V’,’A’}; % dummy oosetfemops!

p.u(p.nu+2)=getV(p,p.u); p.u(p.nu+3)=getA(p,p.u); % get initial vol & area

p.nc.lammax =200; p.nc.dsmax =3; p.nc.dlammax =3; p.file.smod =10;

Listing 1: spcap1/scinit.m; the pde-object pde in line 4 is generated in a legacy pde2path setup but only
used to generate the initial p.X, with initial triangulation stored in p.tri (line 10).

19



During init, we call pde=diskpdeo2 to generate a temporary FEM object from which we extract the
initial mesh to generate the initial p.X and store p.tri as the triangulation. Additionally we extract
p.DBC as the (Dirichlet) boundary edge index vectors, and p.idx as the boundary point indices. This
is in principle redundant, but it makes the setup of the DBCs in sGsc shorter.

function r=sGsc(p,u) % spherical cap PDE (more generally: CMC with DBCs)

par=u(p.nu+1:end); H0=par(1); u=u(1:p.np); % split into u and parameters

N0=getN(p,p.X); X=p.X+u.*N0; N=getN(p,X); % normal , new X, new normal

M=getM(p,X); LB=cotmatrix(X,p.tri); % mass matrix and Laplace -Beltrami

r= -0.5*dot(LB*X,N,2)+M*(H0*ones(p.np ,1)); % rhs -PDE , i.e., -H(X)+H0=0

6 r(p.idx)=u(p.idx); % Dirichlet BCs

p2pglob.tsw =1; p2pglob.vi=[20 ,40]; p2pglob.edc=’k’; % plotting controls

%% init; pars will be overwritten in scinit

nx=12; h0=0; v0=0; a0=0; par=[h0; v0; a0]; % initial pars

4 p=scinit(nx,par); p=setfn(p,’cap1’); p.sol.ds=0.1;

p.sw.jac=0; % numerical (0) or functional (1) jacs for G, speed no problem

p.sw.qjac =1; % numerical (0, too slow), hence functional (1) derivative for q

p.nc.ilam =[2 1]; p.nc.nq=1; p.fuha.qf=@qfV; p.fuha.qfder=@qjacV; % cont in V,

p.plot.bpcmp =1; p.nc.usrlam =[2 4]; % cmp for branch -plot , vals for forced output

9 p=cont(p,5); % go

%% alternate cont and mesh refinement based on triangle areas

p=loadp(’cap1’,’pt5’,’cap1r ’); p.sw.nobdref =0; p.sw.rlong =1; p.file.smod =2;

sig =0.2; for i=1:10; p=refineX(p,sig); p=cont(p,5); end

%% just cont in H (no constraints)

14 p=loadp(’cap1’,’pt0’,’Hcont ’);p.nc.nq=0;p.nc.ilam =1;p.sol.ds= -0.1;p.plot.bpcmp =5;

sig =0.2; for i=1:4; p=cont(p,5); p=refineX(p,sig); end % alternate ref. and cont

Listing 2: spcap1/sGsc.m, and start of cmds1.m (omitting plotting).

In cmds1.m we then continue the initial disk (with V = 0 and A = π) in V . For this we switch on
the constraint V (u) = V via p.nc.nq=1, p.fuha.qf=@qfV; p.fuha.qfder=@qjacV, with the Xcont

library functions qfV and qjacV, and set p.nc.ilam=[2,1], cf. Remark 3.1. For mesh adaptation
we use the triangle areas on X as selector, and refineX also updates p.DBC and p.idx, leading to
Fig. 1(a), where we use repeated mesh refinement every 5th step. This way we can accurately continue
to arbitrary large V , i.e., arbitrary large “cap radius” R, where H = 1/R asymptotes to H = 0. In
the second part of cmds1.m we continue in A and hence set p.nc.ilam=[3,1]; p.fuha.qf=@qfA;

and p.fuha.qfder=@qjacA. This yields exactly the same branch as the continuation in V , and all this
works very robustly and fast.

Remark 3.2 The numerical Jacobians of G (for p.sw.jac=0 in line 5 of Listing 2) are sufficiently
fast to not play a role for the speed of the continuation, at least for np < 2000, say, because Matlab’s
numjac can efficiently exploit the known sparsity (structure) of ∂uG, given by the sparsity structure
of the Laplacian K, or equivalently, by the sparsity structure of the (full, not Voronoi) mass matrix
M . On the other hand, if q implements some integral constraints, e.g., area or volume, then ∂uq(u) ∈
Rnq×np is dense, and numerical derivatives for ∂uq are a serious bottleneck. For illustration, in cmds1.m

we use the commands jaccheck and qjaccheck, which are rather important for “debugging” when
numerical Jacobians become too slow. Both return relative errors between functional and numerical
Jacobians, and as a rule of thump, in ∂uG relative errors ≤ 10−3 should be achieved, and do not affect
the continuation or bifurcation results, and for ∂uq even somewhat larger relative errors are usually
no problem. c

In cmds2.m we test different options for mesh adaptation, see Listing 3 and Fig. 7.7 The black line
capr1 in (a), starting from cap1/pt10, corresponds to adaptation each 15th step, with “refinement

7Fig. 7(a,b) shows essentially verbatim output from plotbra in cmds2.m, where the dots and numbers indicate the
continuation step, subsequently used also in the sample plots as in (c). This also holds for all subsequent plots, and the
only “manual adjustments” are the occasional repositioning of the numbers at the arrows by drag and drop, as this is
not automatically optimized.

20



(a) (b) (c)

0 100 200

V

0.02

0.04

0.06

0.08

0.1

||
H

-H
(V

)|
|

2
/|
H

(V
)|

27

25

100 200

V

5.5

6

6.5

7

m
a
x
(h

/r
)

25

27

Figure 7: Results from spcap1/cmds2.m. (a) Error e(X) := ‖H −H(V )‖2/|H(V )| for refinement each 15th

step (capr1, black) (starting at step 10), when e(X) > p.nc.errtol = 0.05, using p.fuha.ufu=@refufu

(capr3, red), and when max(A) > 0.3 using p.fuha.ufu=@refufumaxA with σ = 0.3 (capr4, magenta).

At V = 200, np = 1452 on capr1, np = 1486 on capr3, and np = 636 on capr4. (b) Mesh distortion

δmesh = max(h/r) (edge-length over in–radius). (c) Illustration of meshes before/after refinement at pt25;

plots cropped at y = 0 for better visibility of the meshes, and the boundary at z = 0 marked in red.

factor” σ = 0.3 (fraction of triangles marked for refinement). As we choose p.sw.rlong=1 we only
bisect the longest edge of a selected triangle, and the actual fraction of refined triangles is between
σ and 2σ.8 For capr3 (red) we refine when the “error” e(X) exceeds p.nc.errbound = 0.04, where
e(X) is also used for plotting and defined as follows: For given V we compute the (exact) H(V ) of
the associated (exact) spherical cap C(V ) as

H(V ) = −π
1/3(3V + s− π2/3)(s− 3V )1/3

s(3V + s)1/3
, where s =

√
9V 2 + π2. (41)

We then define the “relative L2 error”

e(X) = ‖H(X)−H(V )‖L2(X)/|H(V )|, (42)

and put e(X) on the branch in the modified local copy cmcbra.m of the standard (library) cmcbra.m.9

e(X) can then be plotted like any other output variable, and, moreover, can be used (without recom-
puting) in p.fuha.ufu (user function), which is called after each successful continuation step. The
default (library) setting p.fuha.ufu=@stanufu essentially only gives printout, and to switch on the
adaptive meshing we rename and modify a local copy as refufu.m, and set p.fuha.ufu=@refufu.
Since e(X) is at position 13 in (our modified) out=cmcbra(p,u), and since out is appended to the
six values from bradat, cf. Remark 2.5a), in refufu.m we then simply add the commands

if brout(6+13)>p.nc.errbound; p=refineX(p,p.nc.sig); end.

Another “natural” alternative is to refine when

amax = max(a1, . . . , ant) > p.maxA, (43)

i.e., when the maximum area of the nt triangles exceeds a chosen bound. This is not an error estimator

8For p.sw.rlong=0 (RGB refinement with possibly longer cascades to avoid hanging nodes) σ is only a lower bound.
9We also put ‖H(X) −H(V )‖∞/|H(V )| and zmax(V ) − zmax on the branch, where zmax(V ) is the height of C(V )

and zmax the numerical height; these can then also be plotted via plotbra, and/or chosen as error indicators, but the
L2 error seems most natural. Also note that e(X) is normalized by |H(V )| (which decays in V ), but not by A (which
increases with V ).

21



in any sense (as a plane can be discretized by arbitrary large triangles), but an ad hoc criterion,
with typically an ad hoc choice of p.maxA, which could be correlated to H. It is implemented in
refufumaxA.m which, if maxA > p.maxA, calls refineX with e2rsmaxA to select all triangles with
A > (1− σ)p.maxA. With p.maxA = 0.3 and σ = 0.2 this yields the magenta line in Fig.7(a).

The samples in Fig.7(c) illustrate a refinement step on the black branch, yielding a “reasonable”
mesh also at large V . However, this naturally depends on the choice of steps between refinements
(and on the refinement fraction sig and continuation stepsize ds). For the red line in Fig. 7(a), the
refinement when the error e(X) exceeds the chosen bound p.nc.errbound is more genuinely adaptive,
and this similarly holds for capr4 based on (43), see also cmds2.m for various further plots. (b) shows
that the long–refinement generally yields a (mild) increase of the mesh distortion δmesh, but overall
the mesh–quality stays very good.

%% tests of mesh -refinement , preparation: set rlong =1 and dsmax ,dlammax

5 p=loadp(’cap1’,’pt10’); p.sw.rlong =1; p.nc.dsmax =4; p.nc.dlammax =4; p0=p;

%% alternate refine and cont , here ref.each 15th step; single steps for saving

p=p0; p=setfn(p,’capr1 ’); sig =0.3; nsteps =13;

for i=1:5; p=refineX(p,sig); p=cont(p,1); p=cont(p,1); p=cont(p,nsteps); end

%% refine when error exceeds errbound , using refufu

10 p=p0; p=setfn(p,’capr3 ’); p.fuha.ufu=@refufu; p.nc.errbound =0.04; p=cont(p,100);

%% refine when max A exceeds p.maxA , using refufumaxA

p=p0; p=setfn(p,’capr3 ’); p.fuha.ufu=@refufumaxA; p.fuha.e2rs=@e2rsmaxA;

p.maxA =0.3; p=cont(p,100);

%% error plots; error appended at end of cmcbra , component c=13

15 lab =[25 27]; c=13; mclf (8); plotbra(’capr1’,’pt71’,8,c,’lab’,lab ,’fp’ ,11);

plotbra(’capr3’,8,c,’lab’,[],’cl’,’r’,’fp’ ,11);

Listing 3: Selection from spcap1/cmds2.m, refinement each 15th step, e(X)–dependent refinement via setting
p.fuha.ufu=@refufu and p.nc.errbound=0.04, and refinement based on (43).

In cmds3.m and Fig. 8 we decrease V from V ≈ 150 (running the branch capr1 from Fig. 7 back-
wards), and test the MCF from a spherical cap at V ≈ 15. For both, because the shrinking of the
caps gives mesh distortions, the main issue is that we now need to alternate continuation/flow and
mesh–coarsening. For the continuation we give two options: similar to the refinement for increasing V
in Fig. 7, we either coarsen after a fixed number of steps (black branch), or when δmesh > 8 (magenta
branch). Both here work efficiently only until V ≈ 35, after which new parameters for the coarsening
should be chosen. For the MCF in (d) we similarly coarsen after a given number of time steps. With
this we can flow back to the disk, more or less reached at t = 3, but the last plot in (d) shows that
along the way we have strongly distorted meshes, which are somewhat repaired in the coarsening
steps, and the final distortion with δmesh ≈ 30 is not small but OK.

%% go branch backwards , cont -coarsening loop

p=loadp(’capr1 ’,’pt56’,’capr1b ’); p.sol.ds= -3.2; p=resetc(p);p.fuha.e2rs=@e2rsAi;

p.file.smod =5; p0=p; sig =0.5; for i=1:8; p=coarsenX(p,sig); p=cont(p,5); end

%% coarsen via coarsufu

5 p=p0;p=setfn(p,’capr1d ’);p.fuha.ufu=@coarsufu; p.nc.delbound =8; p=cont(p,40);

%% MCF , with initial large V; to handle meshing , alternate flow and coarsening

15 % this may require trial and error to balance dt, flow -length nf, and

% coarsening sigc. First some graphics settings , then load and prepare:

p2pglob.cut =0; p2pglob.vi=[30 ,40]; p2pglob.cm=’spring ’; p2pglob.tsw=4;

p=loadp(’cap1r ’,’pt15’,’mcf’); sigc =0.1; dt =0.0005; nf=500; nplot =100;

p.sw.nobdcoarsen =0; p.t=0; plotHK(p); figure (1); title(’t=0’); % prepare MCF

20 p.fuha.flowf=@mcff; t=0; ts=[]; p.fuha.e2rs=@e2rsAi;

%% the MCF/coarsening loop; repeat this cell as desired

for i=1:4; [p.X,t,ts]= geomflow(p,t,ts ,dt ,nf ,nplot); p=coarsenX(p,sigc); end

Listing 4: Selection from spcap1/cmds3.m; decreasing V by going backwards, and MCF; both need to be
combined with coarsening. Omission between lines 5 and 14 deal with plotting, and further experiments are
at the end of cmds3.m.

22



(a) (b) (c)

40 60 80 100 120 140

V

7.2

7.4

7.6

7.8

8

8.2

m
e
s
h

=
m

a
x
(h

/r
)

0

35

40 60 80 100 120 140

V

0.1

0.15

0.2

a
m

a
x

(d)

0 2

t

5

10

15

20

25 A

V

0 1 2 3

0

50

100

Figure 8: Results from spcap1/cmds3.m. (a)-(c) continuation backwards in V from V≈150 (np=1452);

coarsening each 5th step (capr1b, black, np=644 at V=40) vs coarsening when δmesh > 8 (magenta, np=650

at V=40)). (d) MCF from the spherical cap at V≈15. time series of A and V , sample plots, and time series

of δmesh (last plot). Coarsening at times t = 0.25j, altogether from np = 773 at t = 0 to np = 450 at t = 3.

Remark 3.3 The performance of the MCF as in Fig. 8, based on our simple explicit Euler stepping,
depends on the choice of flow parameters, i.e., step size dt, number nf of steps before coarsening, and
coarsening factor σ. With too weak coarsening (large nf, or small σ), triangles may degenerate. Too
aggressive coarsening (large σ) may lead to wrong identification of boundary edges. Altogether, at
this point we must recommend trial and error. c

3.2 Some minimal surfaces

Plateau’s problem consists in finding soap films X spanning a (Jordan) curve (a wire) γ in R3, and
minimizing area A. Mathematically, we seek a minimal surface X, i.e., H(X) ≡ 0, with ∂X = γ. Such
problems have a long history, and already Plateau discussed non–uniqueness and bifurcation issues,
called “limits of stability” in [Pla73].

A classical example for which a bifurcation is known is Enneper’s surface, see §3.2.3. However,
in the demo bdcurve we first start with other BCs, meant to illustrate options (and failures) for
prescribing boundary values in our numerical setup. We introduce parameters α ∈ R and k ∈ N
(angular wave number) and a switch p.bcsw, and consider BCs of the form

u|∂X = 0, (for p.bcsw=0), (44)

X3|∂X = α sin(kφ), φ = arctan(y/x) (for p.bcsw=1), (45)

∂X = γ(·;α, k) (for p.bcsw=2), (46)

where γ in (46) is a prescribed boundary curve, depending on parameters α, k. Specifically, in §3.2.2

23



we choose

γ(φ;α, k) =

 β cos(φ)

β sinφ

α cos(kφ)

 , φ ∈ [0, 2π), β =
√

1− α2 cos2(kφ). (47)

For (45), ∂X is not uniquely determined by the parameter α (and fixed k), and this illustrates how
our scheme (4) can fail, and that the condition Y ∈ NC cannot be dropped in Lemma 2.1. Relatedly, for
(45) the continuation can genuinely depend on the continuation stepsize ds, as different predictors give
different BCs (45). In other words, the problem is under–determined and the continuation algorithm
itself “chooses” the BCs. Thus, (45) is a cautionary example, though it produces interesting minimal
surfaces. On the other hand, (46) is a genuine DBC with unique continuation, which however requires
a modification of the “standard” updX.m, and careful mesh handling. Together, (45) and (46) are
meant to illustrate options.

The condition on β in (47) yields that ‖γ‖2 = 1, i.e., that γ lies on the unit sphere, for α ∈ [0, 1].
Moreover, the projection of γ into the x–y plane is injective, and this is useful since we then can
extract φ from ∂X. In §3.2.3 we treat a variant of (47), associated to the Enneper surface, where
the discretization of γ requires a further trick. On the other hand, γ from (47) becomes singular at
φ = jπ/k as α→ 1, which is useful to test mesh–handling. Thus, §3.2.2 and §3.2.3 are quite related,
but illustrate different effects.

Table 6 shows the used files, Listing 5 shows sGbdcurve, and Listing 6 the “new” (compared to
spcap1/) files needed to run the BCs (46). The other files are essentially as in spcap1/, except that we
now have altogether five parameters (H,V,A, α, k), and that we use the additional parameter p.bcsw.

Table 6: Files in pde2path/demos/geomtut/bdcurve.

cmds1a.m continuation in α (and H) for (45), see Fig.9; MCF tests in cmds1b.
cmds2.m continuation in α for (46), see Fig. 10.
bdcurveinit.m Initialization, very similar to scinit.
sGbdcurve.m very similar so sGsc, except for the BCs.
updX.m mod of standard updX; for p.bcsw=2 setting the boundary curve.
bcX.m user function to give γ, here implementing (47).

function r=sGbdcurve(p,u) % PDE rhs , discrete mean curvature

if p.bcsw ==2; Xbc=bcX(p,u); p.X(p.idx ,:)=Xbc; end % set Bdcurve

3 par=u(p.nu+1:end); H0=par(1); N=getN(p,p.X); X=p.X+u(1:p.np).*N;

M=getM(p,X); LB=cotmatrix(X,p.tri); N=getN(p,X);

r= -0.5*dot(LB*X,N,2)+M*(H0*ones(p.np ,1)); % PDE -rhs , i.e., H-H0=0

switch p.bcsw % BCs

case 1; % X_3=al*sin(k*phi)

8 al=par (4); k=par (5); phi=angle(X(p.idx ,1)+1i*X(p.idx ,2));

r(p.idx)=X(p.idx ,3)-al*sin(k*phi);

otherwise; r(p.idx)=u(p.idx); % \pa X=\ga (boundary curve)

end

Listing 5: bdcurve/sGbdcurve.m, with BCs depending on p.bcsw.

function Xbc=bcX(p,u) % set BCs; called in sGbdcurv , with u=0 on bdry there

par=u(p.nu+1:end); al=par(4); k=par(5); phi=angle(p.X(p.idx ,1)+1i*p.X(p.idx ,2));

b=sqrt(1-(al*cos(k*phi).^2)); Xbc=[b.*cos(phi), b.*sin(phi), al*cos(k*phi)];

function [p,u]=updX(p,u) % local mod of updX.m, with update of BCs.

if p.bcsw ==2; Xbc=bcX(p,u); p.X(p.idx ,:)=Xbc; end

N=getN(p,p.X); np=p.nu/p.nc.neq; p.up=u; p.X=p.X+u(1:np).*N; u(1:np)=0;

Listing 6: bcX.m and updX.m from bdcurve/, needed to run with the BCs (46).

24



3.2.1 Prescribing one component of X at the boundary

In cmds1a.m (Listing 7) we continue (45) in α, starting with α = 0 at the flat disk, and first with
angular wave number k = 2. Some results are shown in Fig. 9.

(a) (b)

0 0.2 0.4

3.15

3.2

3.25

3.3

A

5

12

9

5

(c) (d)

0 0.5

3.15

3.2

3.25

A

19

7

(e) (f)

-1 0 1

H

4

5

6

7

8

A

30

20

30

Figure 9: Results from bdcurve/cmds1a.m. (a) Continuation in α with BCs (40), k = 2: black and red

branches with np=945 mesh points and fixed ds=0.05 (black) and ds=0.1 (red), illustrating the step–length

dependence of the continuation; blue branch b2r via refinement at boundary. Samples in (b) and (c), partly

with cropping. (d) Like (a,b) but on finer meshes, with k=1 and k=4, and with marking ∂X in red. All of

(a–d) are minimal surfaces, i.e., H ≡ 0. (e,f) Switching back to continuation in H at b2/pt6.

%% cont in alpha , BCs X_3 -alpha*sin k\phi=0; MUST fail when X gets ’vertical ’

2 nx=15; h0=0; v0=0; a0=0; al=0; k=2; par=[h0; v0; a0; al; k];

p=bdcurveinit(nx,par); p=setfn(p,’b2’); p.nc.ilam =4; p.bcsw =1; ds =0.05;

p.sol.ds=ds; p.nc.dsmax=ds; p.nc.lammax =1.5; p.nc.lammin = -1.5; p=cont(p,13);

Listing 7: Start of bdcurve/cmds1a.m, running BCs (45).

As we increase α, the surface lifts at φ = π/4 and π = 5π/4 according to X3 = α sin(2φ), and
sinks at φ = 3π/4 and φ = 7π/4. Near α = 0.5 (b2/pt12), X becomes vertical at these angles, and
hence our scheme (4) can no longer continue to fulfill the BCs. To better resolve the boundary we use
some mesh–refinement only at the boundary. For this we choose p.fuha.e2rs=@e2rsbdry at b2/pt6

and obtain the blue branch (with a sample top view as last plot in (b)), which however naturally runs
into the same continuation failure at α ≈ 0.5. Although this was on quite coarse meshes, none of

25



this changes on finer meshes, and hence this mainly serves as an example of necessary failure of the
algorithm (4), and as an example of mesh refinement with e2rsbdry.

The red branch in (a) together with sample (c) shows that here the branches are continuation
stepsize ds dependent. In (d) we choose finer meshes and wave numbers k = 1 (blue branch b1) and
k = 4 (b4, grey), and get analogous results up to continuation failure. In (e,f) we switch back to
continuation in (H,A) from b1/pt6, in both directions of positive (black branch) and negative (grey
branch) H. As α is now fixed again, ∂X stays fixed even with the BCs (45). The branches are ds–
independent again, and H asymptotes to nonzero ±H∞ as A → ∞. In cmds1b.m we run MCF (not
shown) from selected solutions from (f), where again we need to undo the refinement which happened,
e.g., during the continuation H from b2Hb/pt0 to pt30, and thus we alternate between geomflow and
coarsenX as in spcap1/cmds2.m and Fig.8.

3.2.2 A Plateau problem

In cmds2.m we choose the BCs (46) with γ from (47). We again continue in α, for k = 2, 3, starting
at α = 0 with the unit disk. The basic idea (Listing 6) to implement (46), (47) is to

set ∂X = γ in updX, and u|∂X = 0 in sGbdcurv. (48)

1 %% genuine bdcurve , first with k=2, 5 initial steps

nx=15; al=0; h0=0; v0=0; a0=0; k=2; par=[h0; v0; a0; al; k];

p=bdcurveinit(nx,par); p=setfn(p,’d2’); p.nc.ilam =4; p.bcsw =2; p=cont(p,5);

%% some boundary refinement and coarsening , trial and error to choose sig

p=loadp(’d2’,’pt5’); % reload point (easier for trial and error)

6 sigr =0.1; sigc =0.1; p=refineX(p,sigr); p=cont(p,2); p=degcoarsenX(p,sigc);

%% continuation alternating with moveX , and refine and coarsen , parameters:

nis =15; ncs=1; % #inner steps (before ref/coars), #cont -steps (before more)

dt=0.1; nit =5; % stepsize and iterations in moveX

for i=1:3; % outer loop ,

11 for j=1:nis; % inner loop , alternate moveX and cont

p=moveX(p,dt,nit); pplot(p,20); p=cont(p,ncs);

end

p=refineX(p,sigr); p=degcoarsenX(p,sigc); % refine and coarsen

end

Listing 8: First 15 lines from bdcurve/cmds2.m, using the BCs (46).

Figure 10 shows some results from cmds2.m. The crucial points are that as we increase α (in
particular beyond α = 0.2, say) we

� move mesh points via moveX(p,dt,it) after ncs continuation steps (here ncs=1);
� after nis=15 “inner” steps refine X (introduce new points), here near the boundary, and coarsen
X, here via degcoarsenX(p,sigc), to remove “bad” triangles.

The parameter dt in moveX is the Euler step size to balance the “truss forces” [PS04] (nit gives the
number of iterations), while sigc in degcoarsenX has a similar meaning as in refineX and coarsenX,
i.e., giving the fraction of triangles to coarsen.10 Again, the parameters ncs, nis, sigr and sigc are
generally highly problem dependent and it may require (educated) trial and error to find good values.
In summary, Fig. 10 shows that with a good combination of moveX, refineX and degcoarsenX we
can continue rather complicated minimal surfaces X (X with complicated boundary curve γ) with
reasonable meshes.11

10In more detail, degcoarsenX can also be called as p=degcoarsenX(p,sigc,iter), where iter (default 5) gives
the number of internal iterations, or as p=degcoarsenX(p,sigc,iter,keepbd) where keepbd=1 (default 0) means that
boundary triangles are kept, which is mainly needed for periodic BCs, see §3.4.

11As already said in Rem. 2.6b), due to the analogy between the truss forces and surface tension (constant in minimal
surfaces) moveX works particularly well for minimal X.

26



(a) (b) (c) (d)

0 0.5 1

3

3.5

4

4.5

A

30

50

45

Figure 10: Results from cmds2.m for BCs (46) with k=2 (black branch d2) and k=3 (blue branch d3). Along

the way in, e.g., d2 we do 3 refinements and coarsenings, and the total number of mesh points only increases

mildly from np=945 to np=1177. These are really two different (k=1 vs k=2) continuation problems, out of

inifinitely many (k∈N), and hence the two branches in (a) are from different problems and are both stable.

3.2.3 Bifurcation from the Enneper surface

The Enneper surface is a classical minimal surface. Bounded parts of it can be parameterized by12

XE = XE(r, ϑ) =

 r cos(ϑ)− r3

3
cos(3ϑ)

−r sin(ϑ)− r3

3
sin(3ϑ)

r2 cos(2ϑ)

 , (r, ϑ) ∈ Dα = [0, α)× [0, 2π), (49)

see Fig.11. We start by reviewing some basic facts, see [BT84] and the references therein. For
α ≤ 1/

√
3, the boundary curve

γ(ϑ;α) =
(
α cos(ϑ)− α3

3
cos(3ϑ),−α sin(ϑ)− α3

3
sin(3ϑ), α2 cos(2ϑ)

)
, ϑ ∈ [0, 2π) (50)

has a convex projection to the x–y–plane, and for 1/
√

3 < α ≤ 1 the projection is still injective. This
yields uniqueness (of the minimal surface spanning γ) for 0 < α ≤ 1 (see [Ruc81] for α ∈ (1/

√
3, 1]).

For α > 1 uniqueness of XE fails, i.e., at α = 1 we have a (pitchfork, by symmetry) bifurcation
of different minimal surfaces spanning γα [Nit76]. This has been analyzed in detail in [BT84] as a
two–parameter bifurcation problem, showing a so called cusp catastrophe.13

In the demo enneper we simply choose α as a continuation/bifurcation parameter for

H(X) = 0, ∂X = γα, (51)

and get the pitchfork bifurcation at α = 1. The used files bcX.m, cmds1.m, cmds2.m, enninit.m,

sGenn.m, updX.m are very similar to those from the demo bdcurve, but we also include a Jacobian
sGjacenn.m, a function mytitle.m for customized titles, and thinterpol.m, discussed next.

The problem (51) is “easy” in the sense that we have the explicit parametrization (49) which we
can use at any α, but like in §3.2.2 it does require care with the meshing, and compared to (47) it
requires an additional trick to update ϑ on ∂X after mesh adaption (at the boundary): Since we
cannot in general extract ϑ from (50) from the projection to the x–y plane (which is not injective for
α > 1), we keep a field ϑ = p.th associated to p.idx (the indices of ∂X) in the given discretization.
Then, if p.X1 is obtained from refining p.X with new mesh–points p.nX on ∂X, then we need to
update the ϑ = p.th values of p.nX. This is done in p=thinterpol(p,idxold,thold) by

12see also Remark 3.9 for the Enneper–Weierstrass representation
13See, e.g., [Uec21, Example 1.30] and the references therein for comments on cusps (and other catastrophes).

27



(a) (b) (c)

1 1.5 2

20

40

60

80

100

120

A

36

30

23

15

10

16

(d) (e) (f)

1 1.5 2

2

4

6

8

10

12

V

30

15

(g) (h)

0 5 10 15

t

5

10

15

20

25

30

A

V

Figure 11: Bifurcation from the Enneper surface XE , A over α (a), and V over α (d). At α = 1 (e1/pt10 in

(b)), the branch e1b (blue) with smaller A bifurcates from e1 (black), samples in (b,c) and (e,f). (g,h) MCF

from perturbation of e1/pt23 to e2/pt30, samples showing H.

� finding the (old–point) neighbors of the new points on ∂X;
� linear interpolation of the neighbors’ ϑ values to the new points.

This is a question of indexing, and we refer to the source of thinterpol.m for comments. A refinement
step thus takes the form

idold=p.idx; thold=p.th; p=refineX(p,sigr); p=thinterpol(p,idold,thold);

see cmds1.m which produces Fig. 11. The other files in enneper/ are very much like in bdcurve/.
At α = 1 we find a supercritical pitchfork bifurcation from XE, branch e1 (black), to a branch e2

(blue) which breaks the (x, y, z) 7→ (−y, x,−z) symmetry of XE (rotation by π/2 around the z axis
and mirroring at the z = 0 plane). The solutions “move up” (or down) in the middle, which decreases
A compared to XE, cf. (c) vs (f). (d) illustrates that the (algebraic) volume V of XE is always zero.
The numerical continuation of e1 to large α is no problem, using suitable mesh–adaption, even as
γ(·;α) self–intersects for α >

√
3, because the associated parts of XE do not “see” each other, cf. (e)

for an example. The continuation of e2 to larger α is more difficult, and fails for α > 1.5, as for
instance shortly after e1b/pt30 we can no longer automatically adapt the mesh near the top.

28



However, physically the change of stability at the symmetry breaking pitchfork at α = 1 is most
interesting. Using suitable combinations of geomflow, refineX, degcoarsenX and moveX we can use
MCF to converge for α > 1 and t→∞ to e2, from a variety of ICs, for instance from perturbations of
e1, see Fig. 11(g,h), and enneperflow.avi in [MU24]. After convergence we can then again continue
the steady state, see cmds2.m.

3.3 Liquid bridges and nodoids

Weightless liquid bridges are CMC surfaces with prescribed boundary usually consisting of two parallel
circles wlog centered on the z-axis at a fixed distance l and parallel to the x–y plane. Additionally there
is a volume constraint, which makes the problem different from Plateau’s problem. See for instance
[SAR97] and the references therein for physics background and results (experimental, numerical, and
semi-analytical).

We consider liquid bridges between two fixed circles C1 and C2 of

radius r = r∗ = 1, parallel to the x–y axis and centered at z = ±l = ±1/2. (52)

A trivial solution X0 is the cylinder, with H = 1/2, volume V = 2πl and area A = 4πrl (without
the top and bottom disks). Further explicit solutions are known in the class of surfaces of revolution,
for instance nodoids. We first review some theory for nodoids with DBCs, and then continue basic
liquid bridges (embedded nodoids), with bifurcations to non axial branches, see Figures 12 and 13. In
Figure 14 we then start directly with nodoids with one “inner loop”. Nodoids with “periodic” BCs
are studied in [MP02], and numerically in §3.4, where we also comment on the theory for these.

3.3.1 Nodoid theory

In [KPP17], a family of nodoidsN (r, R) is parameterized by the neck (smallest) radius r and the buckle
(largest) radius R. Let l ∈ R and C1, C2 ⊂ R3 be two circles of radius r∗ centered at heights z = ±l
and parallel to the x–y plane. With the two parameters a,H ∈ R the nodoids are parameterized by
the nodary curve

(x, z) : [−t0, t0]→ R2, t 7→
(
x(t), z(t)

)
=
(

cos t+
√

cos2 t+a
2|H| , 1

2|H|

∫ t
0

cos τ+
√

cos2 τ+a√
cos2 τ+a

cos τ dτ
)
, (53)

which is then rotated around the z axis, i.e.,

Nt0 : M → R3, (t, θ) 7→
(
x(t) cos θ, x(t) sin θ, z(t)

)
, (54)

where M = [−t0, t0]× [0, 2π). Thus, in terms of §2.1 these nodoids are immersions of cylinders. While
(53) only gives nodoids with an even number of self intersections (or none), shifting t0 also gives odd
numbers of self intersections. From the immersion Nt0 , we can determine geometric quantities by
evaluating the parametrization at the endpoints. For example the height and the radius are given by

2l =
1

|H|

∫ t0

0

cos t+
√

cos2 t+ a√
cos2 t+ a

cos t dt, r∗ =
cos t0 +

√
cos2 t0 + a

2|H|
, (55)

and the buckle radius (at t = 0) is R =
1 +
√

1 + a

2|H|
. Implicitly, the equations in (55) define a(t0),

hence also the mean curvature H, and thus t0 parameterizes a family of nodoids t0 7→ Nt0 . Conversely,
given r, l in (52), the implicit equation

l

2r

(
cos t0 +

√
cos2 t0 + a

)
−
(

sin t0 +

∫ t0

0

cos2 τ√
cos2 τ + a

dτ

)
= 0 (56)

29



defines all possible combinations of a and t0 satisfying the boundary condition, which we exploit to
relate our numerics to results from [KPP17], see Remark 3.6.

In order to detect bifurcations from the family (54), we search for Jacobi fields vanishing on the
boundary, cf. (24). The unit normal vector (field) of Nt0 is

N =
(
cos t cos θ, cos t sin θ, sin t

)
, t ∈ [−t0, t0), ϑ ∈ [0, 2π),

and for every fixed vector ~x ∈ R3, the function 〈~x,N〉 is a solution to (23). So the task is to find ~x
and t0 such that the Dirichlet BCs are fulfilled. The components of N have zeros if the nodoid meets
the boundary horizontally (parallel to the x–y plane), which happens at t0 = π

2
+ nπ, or vertically,

which happens at t0 = nπ for n ∈ N. Choosing the unit basis (ei)i=1,2,3, we have in the horizontal
case that 〈ei, N〉 |∂Nt0

= 0 for i = 1, 2, and in the vertical case 〈e3, N〉 |∂Nt0
= 0.

Lemma 3.4 [KPP17, Lemma 3.4 and Proposition 3.6] Consider the one parameter family Nt0. If

for some t0 ∈ R+ the normal vector at ∂Nt0 is

1. N =
(

0, 0, ν(x)
)

, then L = ∂uH(u) has a double zero eigenvalue.

2. N =
(
ν1(x), ν2(x), 0

)
then L = ∂uH(u) has a simple zero eigenvalue.

The immersions are isolated degenerate, i.e., there exists an ε > 0 such that (Nt)t∈[t0−ε,t0+ε] has a

jump in the Morse index. In 1. this occurs for t0 = π
2

+ kπ, and in 2. for t0 = kπ, for every k ∈ N.

Now general bifurcation results (see the discussion after Lemma 2.2) yield the existence of bifur-
cation points at the horizontal and vertical cases presented in Lemma 3.4.

Theorem 3.5 [KPP17, Propositions 3.5 and 3.6] In cases 1. and 2. in Lemma 3.4 we have bifurcation

points for the continuation in H. Moreover,

1. if ψ = 〈ei, N〉 ∈ kerL for i = 1, 2, then the bifurcating branch breaks the axial symmetry;

2. if ψ = 〈e3, N〉 ∈ kerL, then the bifurcating branch breaks the z 7→ −z symmetry.

3.3.2 Nodoid continuation with fixed boundaries

Nodoids with DBCs at the (fixed) top and bottom circles are treated in the demo nodDBC. Table 7
lists the pertinent files. We treat two cases:

� Short embedded nodoids (liquid bridges) in cmds1.m, starting from the cylinder (eventually
continued to self-intersecting nodoids).

� Long nodoids (with self–intersections from the start) in cmds2.m.
For solutions without axial symmetry we additionally need to set a rotational phase condition

(PC): If X is a solution to (3), so is RφX, where φ is the angle in the x–y plane, and

Rφ~x =

 cosφ sinφ 0

− sinφ cosφ 0

0 0 1

 ~x. (57)

Thus, if ∂φ(RφX)|φ=0 = 1
x2+y2

(−y∂xX + x∂yX) ∈ R3 is non–zero, then it gives a non–trivial kernel of

L, which makes continuation unreliable and bifurcation detection impossible. See, e.g., [Uec21, §3.5]
for further discussion of such continuous symmetries. Here, to remove the kernel we use the PC

q(u) :=

∫
X

〈∂φX0, X0 + uN0〉 dS =

∫
X

〈∂φX0, N0〉u dS =:

∫
X

dφ u dS
!

= 0, (58)

30



Table 7: Files in pde2path/demos/geomtut/nodDBC;

cmds1.m continuation in (A,H) of “short” nodoids, starting from a cylinder. First yield-
ing classical liquid bridges, but eventually turning into self intersecting nodoids,
requiring restarts. See Figs. 12,13, and cmds1plot.m for the plotting.

cmds1A2t.m Relating the numerical BPs from cmds1.m to Theorem 3.5.
cmds2.m Continuation in (A,H) of “long” nodoids with one inner loop, see Figs. 14,15.
bdmov1.m, bdmov2.m scripts to make movies of Fig. 12 and Fig. 14, see also [MU24].

nodinit.m, nodinitl.m Initialization of “short” and “long” nodoids
sGnodD.m, sGnodDjac.m rhs with DBCs, and Jacobian.
qfArot.m area and rotational constraints, see qjacArot for derivative.
getN.m overload of getN to flip N .
coarsufu.m mod of stanufu.m for adaptive coarsening, see Fig. 15.

where X0 is from the last step, with normal N0, where φ is the angle in the x–y plane, and hence
∂φX = −X2∇X1X + X1∇X2X, where ∇Xj

are the components of the surface gradient, cf. (13). On
the discrete level we thus obtain the linear function

q(u) = (dφ)Tu, with derivative ∂uq = (dφ)T , (59)

dφ = 〈−X2∇X1X +X1∇X2X,N〉, node–wise, i.e., ∇Xj
X is interpolated to the nodes via c2P, with

Voronoi weights. We then add srotq(u) to E from (2) with Lagrange multiplier srot, and thus modify

the PDE to G(u) := H(u) −H0 + srotdφ
!

= 0. This removes the φ–rotations of non-axisymmetric X
from the kernel of ∂uG(u), and, moreover, |srot| < 10−8 for all the continuations below.

Since the (algebraic) volume V of self–intersecting nodoids is not intuitive, here we use continuation
in area A and H. Thus, we start with the constraint qfA with derivative qjacA. For non–axisymmetric
branches we set up qfArot and its derivative, where we put (58) as a second component of qfA, and
similarly for the derivatives, and when we bifurcate to a non-axisymmetric branch, we set p.nc.nq=2
(2 constraints, area and rotational phase) and p.fuha.qf=@qfArot.

3.3.3 Short nodoids

Listing 9 shows how we initialize by either a cylinder (icsw=0) or parametrization (54). Here, pde.grid
is a 2D rectangular FEM mesh, of which we use the second component as φ ∈ [−π, π]. Lines 16–20
implement (53) and (54) with twice the line φ = ±π where the rotation around the z–axis closes. To
obtain a mesh without duplicate points from this, in the last line of Listing 9 we use clean mesh from
the gptoolbox.

h=par(1); a=par(4); po=pde.grid.p; x=po(1,:) ’; phi=po(2,:) ’;

if icsw ==0; p.X=[a.*cos(phi), a.*sin(phi),x]; % just cylinder

else % KPP17 parametrization of nodoids

15 x1=(cos(x)+sqrt(a+cos(x).^2))/(2* abs(h)); x2=zeros(size(x)); xl=size(x,1);

for i=1:xl

y=@(t) 1./(2* abs(h)).*(cos(t)+sqrt(cos(t).^2+a)).*cos(t)./sqrt(cos(t).^2+a);

x2(i)=integral(y,0,x(i));

end

20 p.X=[x1.*cos(phi), x1.*sin(phi), x2]; % initial X

end

par (7)=max(p.X(:,3))-min(p.X(:,3)); % needed in getV

[p.X,p.tri]= clean_mesh(p.X,p.tri ,’SelfIntersections ’,’ignore ’);

Listing 9: From nodDBC/nodinit.m; setting initial p.X as a cylinder (icsw==0) or via the parametrization
(53) and (54) with (x=t) and subsequent removal of duplicate points.

10 %% 1st BP, double , use gentau to choose bif direction

aux.besw =0; aux.m=2; p1=qswibra(’N’,’bpt1’,aux);

p=gentau(p1 ,[1 0],’N1’); p.sol.ds =0.125; p.nc.tol=1e-5; p.sw.bifcheck =0;

31



p=cont(p,2); % 2 steps without PC, and with bifcheck=0,

p.nc.nq=2; p.nc.ilam =[3 1 6]; p.fuha.qf=@qfArot; p.fuha.qfder=@qjacArot;

15 p.sw.bifcheck =1; p.nc.tol=1e-8; p.sw.jac=0; p=cont(p,20);

Listing 10: From nodDBC/cmds1.m; branch switching at double BP, and continuation with rotational PC.

(a) (b)

20 40 60 80 100

A

0.5

1

1.5

H

50 60 70
0.55

0.6

0.65

0.7

6

20

15

2

52

15

25

20

8

12

10

3

(c)

Figure 12: Bifurcation diagram of (mostly) embedded nodoids (a), with samples in (b,c) cut open at the x–z
plane (y = 0). Branches N (black), Nb (grey), N1 (blue), N2 (red), N4 (orange), N5 (green), N6 (light blue),
N3-1 (magenta), and Nr1, Nr2 and Nr3 (“restarts” of N, grey). See text for details, and Fig. 13 for plots of
N/pt52, Nr1/pt2, and Nr2/pt12.

Figure 12 shows results from cmds1.m (see also the movie nodDBCs.avi from [MU24] to go step
by step through the bifurcation diagram). We start at the cylinder and first continue to larger A
(black branch N). The first BP at (A,H) ≈ (12.24, 1.29) is double with angular wave number m = 1.
We simply select one of the kernel vectors to bifurcate, and do two steps without PC (blue branch
N1, lines 11-13 of Listing 10). Then we switch on the rotational PC in line 14 and continue further.
As predicted, BP1 occurs when X meets the lower and upper boundary circles horizontally, and the
stability changes from N to N1.14 The second BP yields the m = 2 branch N2 (red). These results fully

14 N up to BP1, Nb, and N1 are the only stable (in the sense of VPMCF) branches in Fig. 12, and hence physically most
relevant; the further branches we compute are all unstable, and hence of rather mathematical than physical interest.

32



agree with those from [Bru18]. The branch Nb (grey, with pt3) is the continuation of N to smaller A
(and V ), where the cylinder curves inward.

The third BP on N is simple with z 7→ −z symmetry breaking, yielding branch N3 (brown). On N3

there are secondary bifurcations, and following the first we obtain N3-1 (magenta). The 4th BP on N

again has m = 2 but is different from the 2nd BP on N as the nodoid has already “curved in” at the
boundary circles, which is inherited by the bifurcating branch N4 (orange). The 5th BP on N yields
a skewed m = 2 nodoid N5 (green).15 After the fold, the mesh in N becomes bad at the necks, see
N/pt52 in Fig. 13. Thus, for accurate continuation we use (54) to remesh, see Nr1/pt2 and Remark
3.6(a) and Fig. 13(a–c), yielding the branch Nr1 (grey) in Fig. 12(a). Nr1/pt12 in Fig. 13 shows that
as after a number of steps the nodoid bulges further in, the mesh at the neck deteriorates again, and
so we remesh again to Nr2 (light grey). The nodoid then self–intersects at (A,H) ≈ (22.9, 1.05), and
at Nr2/pt10 we do the next restart to Nr3. Using such remeshing we can continue the branch N (as
Nr1, Nr2, Nr3, ...) to many loops and self–intersections, with many further BPs as predicted in
Lemma 3.4. In any case, although by branch switching from Nr1/bpt1 instead of from N/bpt6 we use
a somewhat adapted mesh to compute branch N6 (red), we only compute a rather short segment of N6
because on N6 we quickly run into bad meshes again. See also §3.3.4 for further comments/experiments
on the meshing of nodoids. In Fig. 13(d) we illustrate the correspondence of our numerical results for
the continuation in A to Theorem 3.5, see Remark 3.6(b).

(a) (b)

(c) (d)

/2 3 /2 2

t
0

0

20

40

60

80

A

BP1

BP2

BP3

BP4

BP5

BP6

FP1

FP2

Figure 13: Continuation of Fig.12; (a–c) (1/8th of) solutions on N before and after remeshing. (d) Comparison
to analytical results, see Rem. 3.6(b).

Remark 3.6 a) For axi– and Z2 symmetric nodoids, we can easily extract a=(2HR−1)2 − 1 from
our numerical data, with R the radius on the z=0 plane. We can then numerically solve the second

15BP5 is an example of a BP qualitatively predicted in [KPP17, Prop.3.9] at large t0.

33



equation in (55), i.e., 1 = r∗ =
cos t0 +

√
cos2 t0 + a

2|H|
for t0, and use this for restarts with a new mesh,

for instance from N/pt52 to Nr1/pt1 in Fig. 13.
b) Similarly, given r∗ = 1 and l = 0.5, we can solve (56) for a and t0 in a continuation process, see

cmds1A2t.m. Then computing A = A(a, t0) gives the black curve in Fig. 13(d), and intersecting the A
values of our numerical BPs gives the t0 values for BP1, BP3 and BP6 as predicted, and explains the
folds FP1 and FP2. In summary, the BPs on N, their multiplicities, and their relation to Theorem 3.5
(if applicable) are

BP number BP1 BP2 BP3 BP4 BP5 BP6

multiplicity 2 2 1 2 2 2

Theorem 3.5 1. NA 2. NA NA 1.

t0 π/2 1.995 π 3.377 3.622 3π/2

(60)

where NA means not applicable, and where for BP1, BP3 and BP6 we give the exact values, with as
indicated in Fig. 12(c) very good agreement of the numerics.16 c

3.3.4 Long nodoids

In nodDBC/cmds2a.m and Fig. 14 (see also nodDBCs.avi from [MU24]) we consider “long” nodoids with
self–intersections.17 As a slightly more explicit alternative to (54), in nodinitl.m we now parameterize
an initial axisymmetric nodoid Ñr,R following [Mla02] by

X : [−π/2, π/2]× [0, 2π]→ R3, (x, ϕ) 7→


r

δ(x,k)
cos(ϕ)

r
δ(x,k)

sin(ϕ)

RE(x, k)− rF (x, k)−Rk2 sin(x) cos(x)
δ(x,k)

 , (61)

where r and R are the neck and the buckle radius, F and E are the elliptic integrals of the first
and second kind, k =

√
(R2 − r2)/R2, and δ(x, k) =

√
1− k2 sin(x). It turns out that here we again

need to be careful with the meshes, and besides adaptive mesh refinement we also use suitable initial
meshes. We discretize the box [−π/2, π/2]× [0, 2π] (pre-image in (61)) by Chebychev nodes in x and
equidistant nodes in y. This is implemented in a slight modification of stanpdeo2D.m in the current
directory, and adapted to the parametrization (61), which “contracts” the mesh for the loop in the
middle.

As we continue the axisymmetric branch lNA (black) to larger A, the inner loop “contracts and
moves out”, cf. lNA/pt2 vs lNA/pt20 in Fig. 14(b). Along the way we find several BPs, the first
yielding a branch lNA1 (blue) with broken z 7→ −z symmetry. The next three BPs yield branches
with angular wave numbers m=2,m=1, and m=3. As we continue these branches to larger A, the
mesh quality deteriorates due to very acute triangles where the inner loop strongly contracts. This
suggests coarsening by removing degenerate triangles, which we exemplarily discuss in Fig. 15, see
also the end of cmds2.m. The red line in (a) shows the mesh–distortion along lNA2, and (b) shows a
zoom of lNA2/pt10; the very acute triangles on the inner loop (δmesh ≈ 400 at pt10) lead to stepsize
reduction and eventual continuation failure. The brown line in (a) and the samples in (c,d) show
results from the degcoarsenX–cont loop

for i=1:6; p=degcoarsenX(p,sigc,nit,keepbd); p=cont(p,4); end;

with sigc=0.5, it=6, keepbd=1 (cf. footnote 10) starting at lNA2/pt3. The distortion stays smaller
(with δmesh ≈ 50 actually at the boundary), and the continuation runs faster and more robustly (larger

16This also holds for further BPs and folds, but we refrain from plotting these in the already cluttered BD in Fig. 12.
17All of the branches from Fig. 14 are unstable, i.e., Footnote 14 applies more strongly.

34



(a) (b)

9.5 10 10.5 11

A

1.4

1.6

1.8

2

2.2

H

2

10

20

10

10
10

Figure 14: (a) Bifurcation diagram of self–intersecting nodoids; branch lNA (black) starts near (A,H) =
(9, 1.3) and shows four BPs to lNA1 (blue, broken z–symmetry), lNA2 (red, m = 2), lN3A (magenta, m = 1),
and lNA4 (green, m = 4). Samples in (b).

stepsizes feasible) than on the original mesh. The magenta line is from setting p.fuha.ufu=@coarsufu

which adaptively coarsens (cf. refufu.m for refinement in Fig. 7) when δmesh exceeds 100. Both here
yield quite similar results, and naturally, similar use of degcoarsenX is also useful for the other nodoids
from Fig. 14, and for those from Fig. 12, in addition to the very specific remeshing used there, which
is only possible because of the explicit formulas. Nevertheless, we remark again that the parameters
for degcoarsenX need trial and error for robustness and efficiency.

3.4 Nodoids with pBCs in z

In [MP02], bifurcations of axisymmetric to non–axisymmetric nodoids are studied with the period (the
“height”) along the axis of revolution (wlog the z–axis) as the continuation/bifurcation parameter.
This uses a different parametrization of the nodoids than (54) or (61), which we do not review here,
as we shall again use (54) for the initialization. For fixed H = 1, [MP02] proves that there is a r0 > 0
such that for neck radii r > r0 (r < r0) there are (are not) bifurcations from nodoids, and gives
detailed asymptotics of bifurcation points in a regime (τ → −∞ in [MP02]) which corresponds to
(R− r)/R→ 0 with outer radius R, see below. In particular, the 2nd variation of the area functional
around a given nodoid Nτ is analyzed with z ∈ R, i.e., for the full non–compact nodoid, not just for
one period cell. This proceeds by Bloch wave analysis, and first establishes the band structure of the
spectrum. Using a parametrization similar to (61), a detailed analysis of the second variation of the
area functional, and ultimately two different numerical methods, [Ros05] shows that r0 = 1/2, and
the first bifurcation (i.e., at r0) leads to non–axisymmetric nodoids with angular wave number m = 2
and same periodicity in z, i.e., Bloch wave number α = 0 in [MP02].

Here we also consider periodic (in z) nodoids with fixed H = 1 using the height δ as continua-
tion/bifurcation parameter. We recover the primary bifurcation at r = r0 = 1/2 from [Ros05], and
further bifurcations, see Figs. 16 and 17.

Remark 3.7 Similar to §3.3.2 we distinguish between “short” and “long” nodoids. Here, this merely
corresponds to computing on one respectively two period cells in z, and the main distinction is as
follows: All 1–periodic solutions are naturally n–periodic for any n ∈ N. With respect to bifurcations,
the 1–cell computations then correspond to Bloch wave numbers α = 0 in [MP02]. For n ≥ 2 periods
cells we obtain further discrete Bloch wave numbers, e.g., additionally α = π for n = 2. This then

35



9.8 10 10.2 10.4 10.6

A

100

200

300

400

m
e
s
h

=
m

a
x
(h

/r
)

14

10

22

(c)

(a) (b)

(c) (d)

Figure 15: Results from the end of cmds2.m, example of a degcoarsenX–cont loop (lNA2c, brown), and
adaptive coarsening (lNA2cc, magenta) for lNA2. (a) mesh quality δmesh = max(h/r) over A, original lNA2 in
red. (b) original lNA2/pt10 (cut open), np=3430; (c,d) samples from lNA2c with np = 2744 and np = 2347.

allows bifurcations which simultaneously break the S1 and the Z2 symmetry of the symmetric nodoid,
and this is illustrated in Fig. 17, which only gives a basic impression of the extremely rich bifurcation
picture to be expected when the computational domain is expanded further in z. To avoid clutter we
refrain from putting the cases n = 1 and n = 2 in one figure. c

Numerically, to set up “periodic boundary conditions in z”, we proceed similar to the pde2path

setup for periodic boundary conditions on fixed (preimage) domains, see [Uec21, §4.3]. The basic
idea is to identify points on ∂X at z = ±δ. Thus, before the main step X0 7→ X0 + uN0 for all our
computations, we transfer the values of u from {X3 = −δ} to {X3 = δ} via a suitable “fill” matrix
p.mat.fill, which has to be generated at initialization and regenerated after mesh–adaptation. The
essential command is box2per, which calls getPerOp to create p.mat.fill (and p.mat.drop which is
used to drop redundant variables), and which rearranges u by dropping the (redundant) nodal values
at points which are filled by periodicity.

Similar to §3.3.2 we need a rotational PC for non–axisymmetric branches, but here for all com-
putations we additionally need translational PCs in x, y and z directions, i.e. Si~x = ~x + ei. These
translations act infinitesimally in the tangent bundle as SiX0 = ∇iX0, and hence the pertinent PCs
are

qi(u) = 〈∇iX0, X0 + uN0〉 = 〈∇iX0, N0〉u, i = 1, 2, 3, (62)

with derivatives ∂uqi(u) = 〈∇iX0, N0〉. Like (59), they are implemented node–wise, and their deriva-
tives are added to G with Lagrange multipliers sx, sy, sz. Table 8 comments on the files used, and
Listings 11–14 show the main new issues from the otherwise typical function and script files.

% pdeo etc only needed once , so here make dummy q, later discarded

25 q=p; q.pdeo=pde; q.pdeo.grid.p=q.X’; q.pdeo.grid.t=p.tri;

36



Table 8: Files in pde2path/demos/geomtut/nodpBC; similar to nodDBC, and we mainly comment on
the differences.

cmds1.m script for Fig. 16 (single period cell); experiments with mesh-adaptions in cmds1b.m.
cmds2.m script for Fig. 17 (double period cell).
lnodpBCmov.m script to make a movie of Fig. 17, see also [MU24].
cmds2b.m experiments with trying to solve quadratic(cubic) bifurcation equations at BP2, and

checking mode crossing at BP2 by varying H0.
nodbuckinit.m initialization, using parametrization (54), extracts initial height δ, and sets the “fill”

and “drop” matrices for the pBCs.
sGnodpBC.m rhs with pBCs; here using numerical Jacobians.
qf.m, qjac.m 3 translational constraints (for S1 symmetric branches), and derivative.
qfrot.m qf.m extended by rotational phase condition, derivative in qjacrot.m.
getN.m flips N , and additionally forces horizontal normals at bottom and top.
getM.m mod of standard getM with subsequent filltrafo for reduction to active nodes.
getMf.m renaming of standard getM to get M for the full X (no dropping of per. boundaries).
getA.m small mod of standard getA to work on full X.
mytitle.m helper function for plots, called in pplot since p2pglob.tsw=5.

p=box2per(q,3); % generate (initial) p.mat.fill and p.mat.drop

Listing 11: Initializing pBCs in nodpBC/nodbuckinit.m via box2per, which automatically generates the
pertinent drop and fill matrices to deal with the pBCs in direction 3 (= z–direction).

function r=sGnodpBC(p,u) % nodoids with pBCs

par=u(p.nu+1:end); H0=par(1); del=par(6); % height

sx=par (7); sy=par (8); sz=par (9); sphi=par (10);% Lag.for translations & rotation

4 u=u(1:p.nu); uf=p.mat.fill*u; N0=getN(p,p.X); X=p.X+uf.*N0; % fill , then as usual

Listing 12: Start of nodpBC/sGnodpBC.m, l4 fills u, and afterwards we proceed as before.

1 function q=qf(p,u) % constraints: 3 translations

u=u(1:p.nu); N0=getN(p,p.X); grX=grad(p.X,p.tri);

grXx=grX (1:p.nt ,:); grXy=grX(p.nt +1:2*p.nt ,:); grXz=grX (2*p.nt +1:3*p.nt ,:);

I=c2P(p.X,p.tri); % I interpolates from triangle centers to points

grXx=I*grXx; grXy=I*grXy; grXz=I*grXz; % grXx , grXy , grXz now act on nodal u

6 dx=grXx*p.X; dx=dot(dx ,N0 ,2); % x-translations

dy=grXy*p.X; dy=dot(dy ,N0 ,2); % y-translations

dz=grXz*p.X; dz=dot(dz ,N0 ,2); % z-translations

qx=(p.mat.fill ’*dx)’*u; qy=(p.mat.fill ’*dy)’*u; qz=(p.mat.fill ’*dz)’*u;

Listing 13: nodpBC/qf.m, implementing the three translational PCs; the gradient matrices are computed
on the full p.X, and their periodic parts are dropped for their actions on u(1:p.nu) (line 8). For non
axi–symmetric nodoids we extend qf in qfrot by a rotational PC as an additional 4th line.

5 p2pglob.tsw =3; p2pglob.pbctol =1e-3; % weak tol to identify boundaries

V0=0; A0=0; h0=1; a=2.4; r=0.2; del =1; sx=0; sy=0; sz=0; sphi =0;

par=[h0; V0; A0; a; r; del; sx; sy; sz; sphi]; % del=height , 10=rot

lx=pi; ly=pi; sym =0; p=[]; ny=70; nx=30; %start with rather coarse mesh

p=nodbuckinit(p,lx,ly,nx,ny,par ,sym); p=setfn(p,’bN’); pplot(p); p.sw.Xcont =1;

10 %% 1st step

p.nc.ilam =[6 7 8 9]; p.nc.nq=3; % 3 translational constraints

p.fuha.qf=@qf; p.fuha.qfder=@qjac; p.sw.qjac =1; p.sol.ds= -0.01; p=cont(p,1);

%% refine initial mesh (twice), in particular at boundary

sig =0.2; p=loadpp(’bN’,’pt1’); p.sw.rlong =1; p.sw.nobdref =0;

15 p=refineX(p,sig); sig =0.25; p=refineX(p,sig); p=retrigX(p);

Listing 14: Start of nodpBC/cmds1.m. Initialization, first step, and initial mesh refinements.

Fig. 16 shows some results from cmds1.m. For robustness (essentially due to the strong contractions
at the inner loops later in the branches) it turns out to be useful to initialize with a rather coarse

37



(a) (b) (c)

0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

1.2

r 10

20

22

1520

(d) (e) (f)

Figure 16: (a) Bifurcation diagram of nodoids parametrized by height δ, fixed H = 1. The axisymmetric
branch bN (black) starts near δ = 0.88 via (54), and in direction of decreasing δ shows a sequence of BPs to
nodoids with broken S1 symmetry, here bN1 (blue, m = 2) and bN2 (red, m = 3). Samples in (b–f), with
bN1r and bN2r after some refinement.

mesh and after 1 or 2 steps refine by area. As we then decrease δ from the initial δ ≈ 0.88, we
find the first BP at δ ≈ 0.82 and with r = 0.5, corroborating [Ros05], to the angular wave number
m = 2 branch bN1. Using suitable mesh refinement along the way we can continue bN1 to small δ,
where in particular we have multiple self–intersections; first, the inner loops extend the “height” δ for
δ < δ0 ≈ 0.78, and second the inner loops intersect in the plane z = 0 for δ < δ1 ≈ 0.43 (not shown),
making the inner radius r = 0 (or rather undefined). The branch bN2 from the next BP at δ ≈ 0.54
has m = 3, and otherwise behaves like the m = 2 branch. All these branches are rather strongly
unstable, with ind(X) > 4, and Footnotes 14 and 17 again apply.

As indicated in Remark 3.7, the branching behavior of the periodic nodoids very much depends
on which period cell in z we prescribe, with Fig. 16 corresponding to one cell. To illustrate the
richness that can be expected for larger cells, in cmds2.m and Fig. 17 we consider twice the minimal
cell, see also nodpBCl.avi from [MU24]. This yields the same primary nodoid branch, and as a
subset of bifurcations the bifurcations from Fig. 16, with two stacked copies of the solutions from
Fig. 16 along all these branches. Additionally we have a new BP2 around δ = 1.44, with small
eigenvalues µ1,2 ≈ 0.0003 and µ3,4 ≈ 0.004, and the next eigenvalues are µ5 ≈ −0.67 (simple) and
µ6,7 ≈ 0.87. The (approximate) kernel vectors associated to µ1,3 are φ1, φ3 given in Fig. 17(d,e), and
additionally we have φ2 = Rπ/2φ1 and φ4 = Rπ/2φ1 (rotation around the z axis). From the 4 small
eigenvalues separated from the rest of the spectrum we might guess that BP2 is fourfold, which should
have important consequences for the branching behavior at BP2, in the sense of “mixed modes”, see
[Uec21, §2.5.4]. However, φ1 and φ3 do not seem related by any symmetry, and, moreover, using
qswibra and cswibra (see cmds2b.m) to search for solutions of the algebraic bifurcation equations at

38



BP2 only yields the “pure” modes φ1 and φ3 (and their rotations). Thus we conclude that BP2 is not
fourfold, but corresponds to two double BPs close together.18

To further corroborate this, in cmds2b.m we compute the “lN” branches for H0 = 0.8 and H0 = 1.1.
In both cases we find a similar spectral picture at the pertinent BPs as at BP2 for H0 = 1 (4 small
eigenvalues, well separated from the rest of the spectrum, with kernel vectors similar to Fig. 17(d,e)),
but the two pertinent pairs are themselves more clearly separated, and φ1, φ3 flip order between
H0 = 0.8 and H0 = 1.1. If BP2 at H0 = 1 was fourfold, then we would expect this to be due to
symmetry, and hence to also hold for H0 6= 1. That this is not the case suggests that near H0 = 1 we
rather have a “mode crossing” at BP2, and moreover do not expect bifurcating branches of “mixed
modes”.

(a) (b) (c)

1 1.2 1.4 1.6

0.2

0.4

0.6

0.8

1

r

15

10

20 15

25

8

(d) (e) (f)

(g) (h) (i)

Figure 17: (a) Branching from the S1 nodoid from Fig. 16 on twice the minimal cell, see text for details.

Therefore, in cmds2.m we simply do a branch switching in direction of the modes φ1 (see Listing

18See also §3.5.2, where we discuss the opposite effect in more detail: There, an analytically double (due to obvious
symmetry) zero eigenvalue is split up, with a larger split there than between µ1,2 and µ3,4 here.

39



15) and φ3 separately, and obtain the branches lN2a (red) and lN2b (green).19 In detail, we do an
initial step in direction φ1 (resp. φ3), and then switch on the rotational PC as before. The branch lN2a

continues to small δ without problems. The branch lN2b folds back near δ = 1.18, and after pt25

continuation fails, due to mesh degeneration in the inner bends. This can be fixed to some extent by
careful mesh adaptation (yielding later continuation failure), but we do not elaborate on this here as
Fig. 17 is mostly intended as an illustration of the rich bifurcation behavior over larger period cells.

%% 2nd BP possibly double , but algebraic bifurcation equations (ABEs) only yield

% pure modes (see cmds2b). Hence , here switch off ABEs for speed.

% For small ds, two separate BPs may also be detected; but treating them

30 % via the qswibra -trick should always work

aux.besw =0; % switch off ABE computations , just compute kernel

aux.mu2 =0.01; aux.m=4; aux.ali =[]; p1=qswibra(’lN’,’bpt2’,aux);

%% go on 1st

p=gentau(p1 ,1,’lN2a’ ,2); p.sol.ds=0.1; p.nc.tol=1e-4; p.sw.bifcheck =0;

35 p=cont(p,2); % two steps without rotational PC; then switch on and cont further

p.nc.nq=4; p.nc.ilam =[6 7 8 9 10]; p.fuha.qf=@qfrot; p.fuha.qfder=@qjacrot;

p.file.count=p.file.count +1; p.nc.tol=1e-4; p.sol.ds= -0.01; p=cont(p,15);

Listing 15: Selection from nodpBC/cmds2.m. Branch switching from BP2 via qswibra and gentau.

3.5 Triply periodic surfaces

Triply periodic surfaces (TPS) are CMC surfaces in R3 which are periodic wrt three independent (often
but not always orthogonal) directions. Triply periodic minimal surfaces (TPMS) (this implicitly also
means embedded, sometimes abbreviated as TPEMS) have been studied since H.A. Schwarz in the
19th century, and have found renewed interest partly due to the discovery of new TPMS by A. Schoen
in the 1970ies, and due to important (partly speculative) applications of TPMS (and their non–
zero H TPS companions) in crystallography, mechanics and biology. See for instance [AHLL88] and
[STFH06], and [Bra23] for a long list of TPMS.

From the PDE point of view, TPS solve (3) with periodic BCs on a bounding box. Some families of
TPMS were studied as bifurcation problems in [KPS18], using a cell length (period) in one direction as
continuation/bifurcation parameter, and combined with numerical results from [ES18]. Much of the
theory of TPMS is based on Enneper–Weierstraß representations. See Remark 3.9, where we relate
some of our numerical results for the Schwarz P surface family to results from [KPS18] obtained via
Enneper–Weierstraß representations. A way to approximate TPS is as zeros of Fourier expansions of
the form

F (~r) =
∑

k∈Z3,|k|≤N

F (k) cos(2πk~r − α(~r)).

A simple first order approximation of the Schwarz P surface (cf. Fig.1(b)) is

Schwarz P surface ≈ {(x, y, z) ∈ R3 : cos(x) + cos(y) + cos(z) = 0}, (63)

Better approximations with some higher order terms are known, also for many other “standard” TPS,
see, e.g., [GBMK01] for a quantitative evaluation of such approximations. In the demo TPS we focus
on the Schwarz P family, and some CMC companions.20

19 This trick can also be summarized as follows: We do not localize each of the close–together BPs near BP2, which
would require very small (arclength) stepsizes ds, and possibly many bisections. Instead, we just approximately localize
some BP∗ near BP2, subsequently compute the (approximate) kernel at BP∗ using qswibra, and then select a kernel
vector and try branch–switching in that direction. This “usually” works (in particular it works here), and is in particular
useful if many BPs (including BPs of higher multiplicity) are close together. See also §3.5.2 for application of this trick

40



Table 9: Selected files in TPMS/, others (getA.m, qf.m, qjac.m, updX.m) are rather standard, with minor

mods to account for the “filling” of the periodic boundaries.

cmds1.m Schwarz P family, relation to Weierstrass representation in cmdsaux.m, Figs. 18 and 19.
cmds2.m CMC companions of Schwarz P, Fig. 20
Pinit.m Initialization, based on (63) and distmesh.
getN.m mod of standard getN, applying corrections at the boundaries of X, see Remark 3.8.
getperOpX.m here we also fill X; see also Xfillmat.m.

3.5.1 The Schwarz P minimal surface (family)

In TPS/cmds1.m we study continuation (and bifurcation) of the Schwarz P surface in the period δ in
z–direction, focusing on one period cell, i.e., the box

Bδ := [−π, π)2 × [−δ/2, δ/2). (64)

To get an initial (approximate) X on B2π, we use (63) and the mesh generator distmesh [PS04], on
one eighth of B2π, which we then mirror to B2π. The continuation in δ proceeds similar to §3.4, by first
scaling X = Sδp.X to period δ in z and then setting X = X+uN and solving for (u, δ). Subsequently,
the same scaling is applied in updX to set the new p.X. As in §3.4 we have translational invariance in
x, y and z, and hence exactly the same PCs, implemented in qf.m, with derivatives in qjac.m.

Somewhat differently from §3.4 we now also “fill” X by taking the ∂X values from the left/bot-
tom/front of the box to the right/top/back of the box. While u is stilled filled via u = p.mat.fill∗u,
for filling X we compute matrices p.Xfillx, p.Xfilly, p.Xfillz (in Pinit.m, via Xfillmat, which
calls getPerOpX) similar to p.mat.fill, but with −1 (instead of 1) where we want to transfer X val-
ues from one side of the box to the opposite side (assuming symmetry wrt the origin). Finally, it
turns out that the continuation is slightly more robust if in getN we correct N at the boundaries to
lie in the boundaries of Bδ, see Remark 3.8.

Figure 18 shows some results from cmdsP.m. Decreasing δ from 2π (P/pt1 in (b) at δ = 6.2732),
X gets squashed in z direction, and at δ = δ1 ≈ 5.9146 we find a D4 symmetry breaking pitchfork
bifurcation (with the two directions corresponding to interchanging the x and y axis wrt shrinking
and expansion) to a branch P1, which then extends to large δ. On the other hand, increasing δ from
2π (branch pB, grey), we find a fold on the P branch at δ = δf ≈ 6.408. Both δ values agree well with
results from [KPS18] based on the Enneper–Weierstrass representation, summarized in Fig. 18(h), see
Remark 3.9.

Remark 3.8 a) The results from Fig. 18 can also be obtained by choosing “Neumann” BCs on ∂Bδ.
However, for other TPMS we need the pBCs. For instance, we can also continue the H surface
family on a suitable (almost minimal) rectangular box, where however solutions fulfill pBCs but not
Neumann BCs. Due to the necessary larger period cell, and due to branch points of higher multiplicity,
the numerics for the H family are more elaborate, and these results will be presented elsewhere.

b) In fact, in the local copy TPS/getN.m we apply a trick and zero out N1 at x=±π, N2 at y=±π
and N3 at z= ± δ/2. Thus, N is forced to always lie in the cube’s faces, yielding a “combination of
NBCs and pBCs” in the sense that the trick forces X to meet the cube’s faces orthogonally, while the
pBCs keep X on opposite faces together. However, the trick is for convenience as without it we get the
same branches but in a less robust way, i.e., requiring finer discretizations and smaller continuation
stepsizes. c

in a different setting, and, e.g., [Uec21, §10.1] for further discussion.
20The approximation (63), and higher order corrections, also arise from solving the amplitude equations for a Turing

bifurcation on a simple cubic (SC) lattice, where hence the Schwarz P surface, or, depending on volume fractions a
CMC companion of Schwarz P, occurs as the phase separator between “hot” and “cold” phases. See, e.g., [CK97] and
[Uec21, §8.1,8.2], and similarly [WBD97] for the occurrence of Scherk’s surface in 3D Turing patterns.

41



(a) (b) (c) (d)

5 6 7

80

85

90

95

100

105

A

20

7

7

1

15

20

(e) (f) (g) (h)

20 40

a

5.6

5.8

6

6.2

6.4

a
1

a
2

2  F/E

1

f

Figure 18: (a) Bifurcations in the Schwarz P family, black (P) and grey (Pb) branch; bifurcating magenta
branch (P1) breaks D4 symmetry. Samples in (b–g). Comparison with [KPS18] in (h), cf. Remark 3.9.

Remark 3.9 The Enneper–Weierstrass representation of a minimal surface is

(
x, y, z

)
= Re

[
eiϑ

∫ p

p0

(1− z2, i(1 + z2), 2z)R(z) dz

]
, (65)

p0, p ∈ M with M a Riemannian surface, where ϑ is called Bonnet angle, and R :M→ C is called
Weierstraß function. The Enneper surface E from §3.2.3 is given by the dataM = Dα (disk of radius
α) and R(z) ≡ 1. For TPMS, R is a meromorphic function, and M consists of sheets connected at
branch points given by poles of R. See, e.g., [Oss14, §8] for a very readable introduction to Weierstrass
data and the connection of minimal surfaces and holomorphic functions. [Hof90] for a basic discussion
of the Weierstrass data of TPMS, [Ros92] for identifying the Riemannian surfaceM for the Schwarz P
surface with S2×S2 by stereographic projection, where S2 is the unit sphere, and [FW14] for further
examples for construction of TPMS from Weierstraß data.

Following [KPS18], we consider M a double cover of C, and, for a ∈ (2,∞), let

R(z) = 1/
√
z8 + az4 + 1, (66)

where the Schwarz P surface with period cell [−π, π)3 is obtained for ϑ = 0 and a = 14.21 See also
[GK00] for the explicit computation of a fundamental patch of Schwarz P based on (65) and (66) with
a = 14 and a small planar preimage ⊂ C.

In [KPS18], a is taken as a bifurcation parameter along the Schwarz P family with the periods for

21For ϑ = π/2 we obtain the Schwarz D family, and for ϑ ≈ 0.9073 Schoen’s gyroid, as two further TPMS. Moreover,
since these have the same Jacobians as Schwarz P, all bifurcation results from Schwarz P carry over to Schwarz D and
the gyroid, but these appear to be much more difficult to treat in our numerical setting.

42



Schwarz P given by [KPS18, §7.3]

E = 2

∫ 1

0

1− t2√
t8 + at4 + 1

dt+ 4

∫ 1

0

dt√
16t4 − 16t2 + 2 + a

(periods in x and y), (67)

F = 8

∫ 1

0

t√
t8 + at4 + 1

dt (period in z), (68)

up to homotheties (uniform scaling in all directions). We have δ = 2πF/E for our δ, and evaluating
E,F numerically (or as elliptic integrals) and plotting δ(a) := 2πF/E as a function of a we get the
blue curve in Fig. 18(h), which corresponds to [KPS18, Fig.13]. In particular, δ(a) has a maximum at
a = a2 ≈ 28.778, and δ(a2) = δf agrees with our fold position in Fig. 18(a). On the other hand, with
suitable mesh adaptation the branch P1 continues to at least δ = 10. Next, [KPS18] based on [ES18]
gives a bifurcation from the P family at a = a1 ≈ 7.4028, and again we find excellent agreement
δ(a1) = δ1 with our BP at δ1. c

Remark 3.10 a) The fact that P does not extend to “large” δ (but folds back) has also been explained
geometrically in [Hof90], without computation of the fold position.

b) The stability of Schwarz P (and hence also Schwarz D) on a minimal period cell and wrt volume
preserving variations is shown in [Ros92]. However, “larger pieces” of P, e.g., P on [−π, π)2× [−2π, 2π)
are always unstable, even wrt volume preserving variations. See also [Bra96, §8] for a useful discussion,
and illustrations. Numerically, in Fig. 18 we find: ind(X) = 2 except on the segment S of P (and Pb)
between the fold and the BP at δ1, where ind(X) = 1. However, the most (and on S only) unstable
eigenvector has a sign, see Fig. 19, and hence the solutions on S are stable wrt volume preserving
variations. c

(a) (b) (c)

Figure 19: Selected eigenvectors at points as indicated, cf. Remark 3.9b). Top: the most unstable direction,
which does not change sign. Bottom: the second eigenvector; in (a) this approximately spans the kernel.

3.5.2 CMC companions of Schwarz P

In TPS/cmds2.m we compute some CMC companions of the Schwarz P surface, see Fig. 20, where
all we have to do is set ilam=[1,5,6,7] as H sits at position 1 in the parameter vector (and the

43



translational Lagrange multipliers at [5,6,7]). Continuing first to smaller H (black branch PH), X
(the volume enclosed by X and the boundaries of the cube) “shrinks” and we find a BP at H ≈ −0.1.
In the other direction (grey branch PHb), X (the volume enclosed by X) “expands”, with a BP at
H ≈ 0.1. The continuation of both these branches fails at H ≈ −0.3 and H ≈ 0.3 (respectively),
though they can be continued slightly further with careful mesh adaptation.

(a)

-0.2 0 0.2

H

80

82

84

86

88

90

92

A

16 15

BP1

BP1

6

6 6

(b) (c)

(d)

Figure 20: Some results from TPS/cmds2.m. Continuation of Schwarz P in H at fixed δ = 2π. BD in (a): PH
(black), PHb (grey), za (dark green) and zb (lighter green), and za2 and zb2 (orange), but altogether these
are just two different branches. BP1 on PH and approximate kernel vectors in (b,c), and further samples in
(d). See text for details.

Our main purpose here is to show how symmetry considerations and some tricks can help to avoid
numerical pitfalls. By symmetry, the BP PH/bpt1 (and similarly PHb/bpt1) must be double, although
the smallest (in modulus) eigenvalues reported at PH/bpt1 are µ1 ≈ 0.005 and µ2 = 0.02.22 See
Fig. 20(b) for PH/bpt1, and (c) for the (approximate) kernel vectors φ1, φ2. In fact, the plot in (b)
(stronger correction along the z–axis) shows that at least the last step in the localization of PH/bpt1
violated the S4 symmetry of the (now fixed) cube, which explains the rather significant splitting of
the in principle double eigenvalue µ1 = 0. Clearly, we expect φ1,2 to approximate two bifurcation
directions, with D4 symmetry along the x axis (φ1) and y axis (φ2). By symmetry we then must have
at least one more bifurcating branch, with D4 symmetry along the z axis. To find this bifurcation
direction, we can use qswibra with numerical derivation and solution of the algebraic bifurcation

22Additionally, there is a simple negative eigenvalue µ0 ≈ −0.7, and the next two eigenvalues are µ3,4 ≈ 0.5, i.e., µ1,2

are well separated from the rest of the spectrum.

44



equation (ABE) [Uec21, §3.2.2]. However, this is expensive and not always reliable. Here, the three
bifurcation directions (oriented along x, along y, and along z) are returned, but we have to relax the
tolerance isotol for identifying solutions of the ABE as isolated. Alternatively, cf. also Footnote 19,
we can use qswibra with aux.besw=0 (bifurcation equation switch= 0) to let qswibra just compute
and plot the (approximate) kernel φ1, φ2. This lets us guess to approximate the third direction as
φ3 = 0.2φ1 + φ2. This turns out to be sufficiently accurate and gives the transcritical branch(es) za

(dark green) and zb (other direction, lighter green).
On za, the continuation fails after pt6. zb/pt6 is at H = 0 and corresponds to Pb/pt7 from

Fig. 18. Subsequently, zb continues to PHb/bpt1, and is indeed identical to the branch(es) za2 (and
zb2), transcritically bifurcating there. In particular, PHb/bpt1 is again double, and we can compute
the three branches oriented along x, y or z as above (see cmds2.m). zb2 (light orange) then continues
back to PH/bpt1, while zb2 fails after pt6 (last sample in (d)). The continuation failures of za and
za2 after pt6 are due to poor meshes as the different boundaries of X come close to each other, like
after PH/pt16 and PHb/pt15, and it seems difficult to automatically adapt these meshes.

4 Fourth order biomembranes

The (dimensionless) Helfrich (or spontaneous curvature (SC)) functional [Hel73] is

E =

∫
X

(H − c0)2 + bK dS, (69)

where c0∈R is called spontaneous curvature, and b∈R is called saddle–splay modulus. The motivation
of (69) are the shapes of closed vesicles with a lipid bilayer membrane, for instance red blood cells
(RBCs), for which E is to be minimized under the constraints of fixed area A(X)−A0 = 0 and enclosed
volume V (X) − V0 = 0. This motivated much work, e.g., [SBL90, Sei97, NT03, VDM08, OYT14],
aiming to understand the various shapes of RBCs23, mostly in the axisymmetric case. Applying
our algorithms to closed vesicles (without a priori enforcing any symmetry) we recover many of the
results from the above references. See also [LWM08, KIPM+20] for further biological and mechanical
background, [JQJZC98] for non–axisymmetric shapes (under different constraints), and [FVKG22] for
the related problem of 1D radial wrinkling of arteries, with an additional restoring force due to the
surrounding tissue, and a very rich bifurcation structure.

The Lagrangian for (69) is

F =

∫
X

(H − c0)2 + bK dS + λ1(A− A0) + λ2(V − V0), (70)

where λ1 (corresponding to a surface tension [Lip14]) and λ2 (corresponding to a pressure difference
between outside and inside) are Lagrange multipliers for area and volume constraints. For closed
X, the term b

∫
X
K dS in (69) can be dropped due to the Gauß–Bonnet theorem, cf. Footnote 1, as∫

X
K dS = 2πχ(X) is a topological constant, and the Euler-Lagrange equation for normal variations

X = X0 + uN is

∆H + 2H(H2 −K) + 2c0K − 2c2
0H − 2λ1H − λ2 = 0. (71)

If X is not closed, then often one or both of the constraints A − A0 = 0 and V − V0 = 0 is (are)
dropped, and the associated Lagrange multipliers λ1,2 are treated as external parameters, often with

23or, more down to earth, lipid bilayer membrane vesicles which develop upon injection of lipids into water, and
which for instance can also organize into tubes; see also [SL95, §8] for a discussion of additional structures (networks
of spectrin tetramers) on the membrane of RBCs

45



λ2 = 0. If in the Gauss–Bonnet formula∫
X

K dS = 2πχ(X)−
∫
∂X

κg ds (72)

we assume γ = ∂X to be parameterized by arclength, then the geodesic curvature κg is the projection
of the curvature vector γ′′(~x) onto the tangent plane T~x(X), see, e.g., [Tap16, §4.3]. If we restrict to
normal variations ψ = uN which fix the boundary, i.e.,

u|∂X = 0, (73)

then

∂ψL =

∫
X

(∆H + 2H(H2 −K) + 2c0K − 2Hc2
0 − 2λ1H)u dS +

∫
∂X

(H − c0 + bκn)∂nu ds,

where κn = 〈γ′′, N〉 is the normal curvature of γ = ∂X, i.e., the projection of the curvature vector
onto the normal plane, see, e.g., [PP22] and the references therein. Thus we again obtain (71) (with
λ2 = 0), and additionally to (73) we can consider either of

∂nu = 0 on ∂X (clamped BCs, or Neumann BCs), (74)

H − c0 + bκn = 0 on ∂X (stress free BCs). (75)

In the case of (74) we have
∫
∂X
κg ds = 0 in (72), and hence

∫
bK dS again becomes constant and can

be dropped from (69).

Remark 4.1 a) With N the inner normal, the stability for (71) refers to the Helfrich flow (see, e.g.,
[KN06] for the existence theory near spheres)〈

Ẋ,N
〉

= −(∆H + 2H(H2 −K) + 2c0K − 2c2
0H − 2λ1H), (76)

with BCs (73) and (74) or (75) for non–closed vesicles.
b) Biological vesicles can undergo topological transitions which are important for their biological

function, e.g., fission of a small bud from the vesicle, or fusion of two vesicles. We cannot capture
such transitions in our setup of steady state continuation. Some examples of splitting in DNS for a
phase field model are given in, e.g., [DLW06]; see also [BGBC22] and the references therein for a state
of the art discussion of phase field modeling of vesicles.

c) In a certain continuum limit, and with different interpretations of the Lagrange multipliers λ1,2,
(71) can also be derived as the shape equation for carbon nanostructures, see [MDHV13].

d) Besides the Helfrich functional (69), a number of related models exist, for instance the so–called
bilayer–coupling (BiC) model [SZ89],

E =

∫
X

H2 dS, F = E + µ1(A− A0) + µ2(V − V0) + µ3(M −M0), (77)

where M =
∫
X
H dS is the integrated mean curvature, M0 is an external parameter, µ1,2 are the

Lagrange multipliers for the area and volume constraints, and µ3 is the Lagrange multiplier for the
constraint of fixed area difference between the outer and inner lipid monolayer, expressed via Taylor
expansion around a virtual middle layer as q = M −M0 = 0. By identifying µ1 = λ+ c2

0, µ2 = λ2 and
µ3 = −c0 this yields the same shape equation (71) as (70), but the additional constraint M −M0 = 0
drastically changes the phase diagram of minimizers for (77) compared to those for (69). In particular,
for (77) non–axisymmetric minimizers of spherical topology are known to exist, but not for (69).

46



Another model is the so called area difference elasticity (ADE) model, where the area difference
is not a hard constraint but added as an energy penalization, i.e.,

E =

∫
X

H2 dS +
α

2
(M −M0)2, F = E + µ1(A− A0) + µ2(V − V0), (78)

α > 0. This again allows stable non–axisymmetric minimizers which moreover compare well to some
experimental results; see [WDS96, DEK+97] and [Sei99], including a discussion of the shortcomings
of the SC model and the relations between the SC, BiC and ADE models.

Additionally, there are mechanochemical models which couple bending energies E=
∫
X

(H−c0)2 dS
with a scalar morphogen on the surface which aggregates in regions of high mean curvature and which
in turn increases c0 [MMCRH13], or with for instance Brusselator type reaction–diffusion systems on
the surface, where at least one species again increases c0 [TN20]. Most of these models are not gradient
systems and somewhat phenomenological, but easily lead to stable non–axisymmetric vesicle shapes,
and also to persistent wave–like behavior. However, to the best of our knowledge the (numerical)
study of these models so far was restricted to DNS. See also [ES13, BGN15] and the references therein
for FEM discretizations of the dynamics of a variety of models, including the SC, the BiC and the
ADE models, and, moreover considering the dynamics of vesicles in a fluid. c

From the variety of models related to (69), here we opt for the ’classical’ Helfrich SC model,
while results including non–axisymmetric minimizers for the BiC model, and some bifurcation study
for [MMCRH13] type models will be presented elsewhere. In §4.1 we present some basic results for
closed topologically spherical vesicles, and §4.2 deals with biomembrane caps (topological disks) with
stress–free BCs (75), while “bio-cylinders” with clamped BCs are relegated to App. B.

4.1 Closed Vesicles of spherical topology

We start with closed topologically spherical vesicles. Following [NT03] we set λ1 = −λ̃1/2 where λ̃1

is the Lagrange multiplier for the area constraint, and write the shape equations (71) as

∆H + 2H(H2 −K) + 2c0K − 2c2
0H + λ1H − λ2 = 0, (79a)

together with the volume and area constraints

q1(X) = V (X)− V0 = 0 and q2(X) = A(X)− A0 = 0. (79b)

The bending energy E =
∫
X

(H−c0)2 dS is scalingX 7→ γX invariant, and hence a useful dimensionless
quantity to characterize solutions of (79) is the reduced volume

v = V/V0, (80)

where for given A = 4πR2
0 (hence R0 =

√
A/4π), V0 = 4πR0/3 is the volume of the equivalent sphere.

At v = 1, the sphere is the only solution, and for decreasing v we may expect more and more solutions
of various shapes.

A short review of previous work. The unit sphere is a solution of (79) if (for N the inner normal
and hence H ≡ 1),

λ1 = −2c0 + 2c2
0 + λ2. (81)

47



By [NT03, Thm3.1], bifurcations from the sphere occur at

λ1 = n(n+ 1)− 4c0 + 2c2
0, λ2 = n(n+ 1)− 2c0, (82)

n ≥ 2, with kernels of dimension 2n + 1 spanned by the spherical harmonics Ynm, m = −n, . . . , n.
Already from [Pet83] it is known that branches originating from spherical harmonics with n ≥ 3 are
never stable, at least near v = 1, while some of the branches bifurcating at the first BP with n = 2
contain stable solutions, again see also [NT03]. The bifurcation (unique branch modulo symmetry, see
below) is trancritical (in λ1), with one direction yielding oblates (oblate ellipsoids, disk like, turning
into biconcave RBC shapes, see below for sample plots and more specific classifications), and the other
direction yielding prolates (prolate ellipsoids). In particular, these are axisymmetric shapes.

An extensive largely numerical study of axisymmetric vesicles is given in [SBL90], including phase
and energy diagrams, where our use of c0 differs from the one in [SBL90] by a factor 1/2, i.e., our
c0 = 1

2
c0,[SBL90]. In a nutshell, the results in [SBL90, Fig.8,10, 11,13,17] are:

� In the v–c0 phase diagram [SBL90, Fig.10], there is a line (0, 1] 3 v 7→ c0(v) decreasing in v and
with c0(1) = −5/6 such that near v = 1, either oblates (for spontaneous curvature c0 < c0(v))
or prolates (c0 > c0(v)) have minimal E.

� For decreasing v, the prolates lose stability to pears, and the oblates lose stability to stoma-
tocytes. These transitions are discontinuous, i.e., occur via subcritical bifurcations, where the
bifurcating branches (pears from prolates, stomatocytes from oblates) gain stability after one
(or more) fold(s).

� Some regions in the v–c0 phase diagram remain unstudied, but in particular for v > 0.5 and
moderate |c0|, say, there is strong evidence that all local minimizers of spherical topology of E
are axially symmetric.

4.1.1 Our setup

Given the above results, here we mostly focus on the first BP (n = 2 in (82)) and axisymmetric
solutions, and only compute a few secondary bifurcations from the axisymmetric branches and some
bifurcations from the sphere with n = 3. In this, we fix three values of c0, namely c0 = 0, c0 = −1,
and c0 = 1.4, then first continue in λ1 along the spherical branch to prepare branch switching at the
respective BPs from (82), and after branch–switching to non–spherical solutions continue in v, see
Remark 4.2. The BDs are then plotted as E over v, and agree with [SBL90, Fig.8, 11, 13, 17] for the
axisymmetric branches in the v–ranges we can reach. Additionally, our stability information is wrt
general normal variations, not just axisymmetric ones.

Before we embark on this program we briefly comment on the numerical challenges and solutions
to these. The basic setup again consists in setting X = X0 + uN0 (with here N the inner normal),
and then writing (71) as a system of two second order equations for u = (u1, u2), namely

G(u) :=

(
Lu2 +Mf(u1, u2)

Mu2 −H

)
=

(
0

0

)
, (83)

respectively Mdu̇ = −G(u) for the Helfrich flow (76) with the dynamical mass matrix

Md =

(
M 0

0 0

)
, (84)

and where as before M is the (Voronoi) mass matrix, L is the cotangent Laplacian, and

f(u1, u2) = 2u2(u2
2 −K)− 2λ1u2 + 2c0K − 2c2

0u2.

The mean curvature H = H(u1) is computed as H = 1
2
〈LX,N〉, and the Gaussian curvature K =

48



K(u1) is obtained from discrete curvatures, cf. (31). The reason for the reformulation of (79a) as
two second order equations (83) is that this way we can easily implement the two BCs (73) and (74)
or (75) when required.

For the closed vesicles, i.e., without any BCs, we always need the three linear translational PCs

qi(X) :=

∫
X0

〈u,Ni〉 dX
!

= 0, i = 1, 2, 3, (85)

cf. (62), where Ni is the ith component of the (here inner) normal N of X0. For (non–spherical)
surfaces of revolution (axisymmetric branches), we need two rotational PCs (omitting the axis of

revolution). For this, let ~l1 = (l1, l2, l3)T with ‖~l1‖ = 1 be the rotational axis, which we find as

~l1 = Xi0/‖Xi0‖ (86)

with either i0 = argmaxi‖Xi‖ (prolates) or i0 = argmini‖Xi‖ (oblates), and take ~l1,~l2,~l3 with

l̃2 =

−l2l1
0

+

 0

−l3
l2

+

−l30

l1

 , ~l2 =
l̃2

‖l̃2‖
, and ~l3 = ~l1 ×~l2,

as an orthonormal basis of R3. Then the normal variations of rotations around ~l2 and ~l3 are spanned

by
{〈
~l2 ×X,N

〉
,
〈
~l3 ×X,N

〉}
, and the natural rotational PCs are

q3+i(u) :=

∫
X

〈
~li+1 ×X,N

〉
u dS

!
= 0, i = 1, 2. (87)

For non–axisymmetric X we additionally use the third rotational PC q6 :=

∫
X

〈
~l1 ×X,N

〉
u dS

!
= 0,

and we add ηi∂uqi(u) to the first component of G from (83), with Lagrange multipliers ηi. See Table
10 for a summary. Technically, after branch–switching from the sphere we first do two steps without
rotational PCs. For axisymmetric solution branches we then detect the rotational axis via (86) and

switch on the two rotational PCs around ~l2,~l3. After a secondary bifurcation to a non–axisymmetric
branch, or for primary bifurcations to non–axisymmetric branches from the trivial branch (present for
n ≥ 3 in (82)) we switch on the third rotational PC.

Table 10: Contraints and active parameters for different branch types; the parameters s∗ and r∗ are the La-

grange multipliers for the translational and rotational constraints, and stay O(10−6) during all continuations.

type active parameters constraints

trivial (sphere) λ1, λ2, sx, sy, sz area A and volume V , 3 translational PCs

axisymmetric v, λ1, λ2, sx, sy, sz, r1, r2 A and V , 3 translational and 2 rotational PCs

non–axisymmetric v, λ1, λ2, sx, sy, sz, r1, r2, r3 A and V , 3 translational and 3 rotational PCs

Remark 4.2 The eigenvalues for the linearization around a steady state are computed from the
extended system (

Md 0

0 Mq

)
∂tV = −

(
Gu(U) Gw(U)

qu(U) qw(U)

)
V, (88)

49



where U=(u,w) is the steady state including the active parameters w but without the primary active
(genuine continuation) parameter, where V=(v, z) is the considered perturbation, and where Md and

Mq are the pertinent dynamical mass matrices. For (83) we have Md =

(
M 0

0 0

)
from the rewriting

as a 2nd order system, and Mq=0 ∈ R6×6 (axisymmetric case) or Mq=0 ∈ R7×7 (non–axisymmetric
case). Importantly, to obtain the correct stability information we cannot use one of the Lagrange
multipliers as primary active parameter, because the Lagrange multipliers are in general not fixed for
the flow, and hence we use V for the continuation of the nontrivial branches. c

The initial discretization of the sphere is obtained by standard subdivision and projection (like in
Fig.4) with np = 2562 nodes and nt = 5120 triangles. Many of the interesting solutions show narrow
necks, and hence adaptive mesh–refinement and coarsening will play a vital role. See Table 11 for a
list of the pertinent files and further comments. Suitable choices of the parameters of refufu allow
the resolution and robust continuation of rather challenging solutions. Nevertheless, here we restrict
to np ≤ nmax = 6000 nodes in the mesh, and remark that of course for axisymmetric solutions a 1D
setting as in [SBL90] is more efficient and allows yet finer meshes (for the generatrix) and hence the
resolution of narrower necks.

Table 11: Selected files from geomtut/vesicles; sG.m and sphinit.m as usual, some convenience
functions (to shorten scripts) at bottom; see also §4.1.3 for files used for vesicle flow.

cmds0.m continuation of the basic nontrivial branches in V0 for c0 = 0, see Fig. 21, plotting in
cmds0plot.m.

cmdsm2.m c0 = −1, plotting in cmdsm2plot.m, see Fig. 22
cmds2.m c0 = 1.4, plotting in cmds2plot.m, see Fig. 23

hvesbra.m local copy and mod of library function cmcbra.m to also put, e.g., the bending energy E
and the reduced volume v onto the branch for later plotting.

refufu.m local copy and mod (and renaming) of stanufu.m for mesh–adaptation; “switched on” by
setting p.fuha.ufu=@refufu. Proceeds in two steps:
1 (in a loop, until δmesh < p.nc.delbound (user set, typically 10), where in almost all cases
only iteration is needed):

If δmesh > p.nc.delbound (user set, typically 10) then call degcoarsenX to remove
triangles with poor mesh–quality. Solve (83) for u and update X.

Refine the mesh according to e2rsshape1, call retrigX, Solve (83) for u and update X.
2: refine all triangles of area larger than p.nc.Ab (the base triangle size of the initial
discretization of the sphere, or user set). Solve (83) for u and update X.

qAV.m area–, mass–, and three translational constraints (85), derivative in qAVder.m

qAV2rot qAV.m augmented by 2 rotational constraints, derivative in qAV2rotder.m

qAVfrot qAV.m augmented by all three rotational constraints, derivative in qAVfrotder.m

rotax.m find rotational axis for axi-symmetric state, see also showaxis.m

stan2rot.m switch on 2 rotational PCs for axi-symmetric state; calls rotax.m (convenience function).
stanfullrot.m switches on all three rotational PCs

4.1.2 Results

• c0 = 0. Fig.21(a) shows a basic BD for c0 = 0. As already said, we always start with the unit
sphere at some λ1 < 6− 4c0 + 2c2

0, cf. (82), and initially continue to larger λ1 to obtain the BPs from
the sphere, although we know them explicitly from (82). This gives the black trivial branch in the
3rd plot in Fig. 21(a). However, for the nontrivial branches we use v as the primary parameter (see
Remark 4.2), and get the BD in the first plot in (a), with a zoom in the second.

For the BPs in (82) we have λ1 = 6 for n = 2 and λ1 = 12 for n = 3; at the first BP λ1 = 6
we have a 5 dimensional kernel of spherical harmonics, but modulo rotations the only bifurcating
branch we find bifurcates transcritically in λ1 and consists of prolates (orange, stable) in one direction

50



(a) (b)

0.6 0.8 1

v

0.25

0.3

0.35

0.4

0.45

0.5

0.55

E

c
0

=0

12

32

13

25

34 20
0.55 0.6 0.65

v

0.5

0.52

0.54

E

c
0

=0

34
13

20

4 6 8

1

0.3

0.4

0.5

0.6

E

20

(c)

Figure 21: c0 = 0. (a) BDs, E over v, with zoom, and E over λ1; prolates (orange), oblates (red), and two

secondary branches o-1 (green), and o-2 (stomatocytes, violet). (b) samples of one prolate and one oblate.

(c) samples along secondary branches bifurcating from oblates.

and oblates (red, initially unstable) in the other direction, see the samples in (b), with the oblate of
the typical RBC shape. The oblates gain stability at v ≈ 0.76 where the green (non–axisymmetric)
branch bifurcates, on which solutions first look like elongated RBCs (pt15) and then become similar to
prolates (pt42). The oblates (RBCs) lose stability at v ≈ 0.51 (and shorty after become non–physical
due to self intersections) to a subcritical branch of stomatocytes, which stabilizes in a fold at v ≈ 0.66,
after which solutions at low v take the shape of two spheres, the inner one called an inverted sphere,
connected by a narrow neck [SBL90]. See the last sample in (c), after which we cannot continue the
branch further without refining to more than nmax = 6000 nodes. Importantly, the stomatocytes have
lower E than the oblates for v ≤ vos ≈ 0.57, and this corresponds to the discontinuous transition from
oblates to stomatocytes in [SBL90, Fig.10].

• c0 = −1. For c0 = −1 < −5/6 the first BP is at λ1 = 12, and the stabilities of prolates and oblates
near v = 1 flips, i.e., the oblates are now stable near v = 1, and the prolates unstable, and remain
so for all v ∈ (0, 1). See Fig. 22, corresponding to [SBL90, Fig.17]. Near v = vs ≈ 0.7 stomatocytes
bifurcate subcritically from the oblates. According to [SBL90, Fig.17] these stomatocytes stabilize
in a fold near v = 0.95, but in our numerics we can only reach v ≈ 0.92. The red oblates become
unphysical near v = 0.55 due to self intersections, but the branch folds back near v = 0.5 and turns

51



into discocytes with two invaginations, see o/pt70. Again according to [SBL90, Fig.17] the branch
stabilizes in a fold near v ≈ 0.85, but again we cannot continue it sufficiently far and stop at pt70.

(a) (b)

0.5 0.6 0.7 0.8 0.9

v

1

1.1

1.2

1.3

1.4

1.5

1.6

E

c
0

=-1

70

30

50

BP2

32

18

(c)

Figure 22: c0 = −1; oblates (red) which turn into discocytes with two stomas; stomatocytes o-1 (violet);

prolates (orange), and secondary branch p-1 (green) which connects to (a rotation of) diamonds d (blue)

from BP2; the last sample shows the 4 stomas on d.

Instead, in Fig.22 we additionlly show two branches bifurcating from the 2nd BP at λ1 = 20, and
a number of non-axisymmetric branches. The branch c (magenta) from BP2 is axisymmetric with
a roughly conical shape near v = 1, which elongates for smaller v, with several 2ndary bifurcations.
Another branch d from BP2 has tetrahedral symmetry, with four invaginations, and again with 2ndary
bifurcations. Moreover, we show the green branch which bifurcates from the first BP on the orange
prolates branch. This also folds back, and connects to d at v ≈ 0.55, see panel (c). While all branches
shown in (a) are unstable, except the oblates for v > vs, we believe that our selection gives a useful
first impression of the extremely rich bifurcation structure, in particular showing that and how 2ndary
bifurcations from the n = 2 primary branches may connect to n ≥ 3 branches.

• c0 = 1.4. According to [SBL90, Fig.10], for c0 > cp ≈ 1 and decreasing v, prolates lose stability
to pears. This is illustrated in Fig.23 for c0 = 1.4, together with some secondary bifurcations from
the oblates to D3 and D4 “starfish vesicles” o-1 and o-2, and a tertiary bifurcation to o-1-1, which
can be thought of as an analogue of pears.

In detail, at v=vp≈0.73 the green pear branch bifurcates subcritically from the prolates, gains
stability in a fold near v=0.88, and shows lower E than the prolates for v<vpp≈0.8, which hence
gives the discontinuous transition from prolates to pears in [SBL90, Fig.10]. Again, the Dk branches

52



(a) (b)

0.6 0.8 1

v

0.05

0.1

0.15

E

c
0

=1.4

16

38

14 23

20

25

(c)

Figure 23: c0 = 1.4. (a) BD, prolates (p, orange), with pears (p-1, green); oblates (red), with secondary

bifurcations to D3 (o-1, violet) and D4 (o-2, brown), and tertiary bifurcation (o-1-1a, lilac).

with samples in (b) only contain unstable solutions for the SC model. However, some solutions of
this type are in fact stable in the BiC model (77), which yields the same Euler–Lagrange equation
(71) as (69), but with a different energy E in (77), and with different constraints, which change the
stability properties. Therefore we find it useful to show the branches o-1 and o-2 and associated sample
solutions in Fig.23, but a detailed bifurcation analysis of the BiC model will be given elsewhere.

4.1.3 Intermezzo: Numerical Helfrich flow

We explain a setup for implicit geometric flow in imdnsX.m, and present some results for Helfrich flow.
Essentially, for G(u) = (G1(u), G2(u)) from (83), temporally writing G1(X) := G1(X0 + u1N) instead
of G1(u) and similarly for the nq constraints q, we discretize the flow MẊ = −G1(X)N with mass
matrix M and together with q(X) = 0 ∈ Rnq as follows. With temporal stepsize h, tn+1 = tn +h, and
Xn = X(tn), the lhs is approximated as

MẊ ≈ 1

h
Mn(Xn+1 −Xn) =

1

h
Mn(Xn + un+1Nn −Xn) =

(
1

h
Mnun+1

)
Nn,

and we approximate the rhs as −G1(un+1)Nn. With a slight abuse of notation writing U = (u,w) and
u = (u1, H), where H is the mean curvature of X = X0 + uN , canceling Nn and collecting we obtain

G(Un+1) :=

(
1
h
Md,nun+1 +G(un+1, wn+1)

q(Un+1)

)
=

(
0

0

)
∈ Rnu×nq , (89)

53



where Md is the dynamical system mass matrix (i.e., Md =

(
M 0

0 0

)
, cf. (84)), and U = (u,w) consists

of the PDE unknowns and the active parameters without a primary active parameter typically used in
continuation. Thus, (89) is an implicit time–marching scheme, which as usually we solve via Newton
loops. The Jacobian of G reads

∂UG =

(
1
h
Md + ∂uG ∂wG

∂uq ∂wq

)
, Md at tn, and G, q at tn+1, (90)

and to evaluate (89) and (90) we can fall back on the data structures and functions already used for
continuation.

Table 12 lists the pertinent functions. The user interface is p=imdnsX(p,nt,pmod,omod,smod,nc),
where pmod,omod,smod are controls for plotting/output/saving (e.g., plotting each pmodth step), nt
is the number of steps, and where the behavior of imdnsX is further controlled by fields in p.nc,
e.g., p.nc.h (current stepsize), and p.nc.hmin, p.nc.hmax (min and max stepsize). Starting from
some X0 (typically near a steady state, i.e., a result of cont), imdnsX can be called repeatedly until,
e.g., convergence to a (new) steady state is achieved. Importantly, like geomflow, see §3.2.3, imdnsX
usually must be combined with mesh–adaption after a few time-steps, for which we provide a basic
function p=dnsmeshada(p). During DNS, data is written each omodth step into the time–series ts via
imdnsofu, and for postprocessing there are Xflplot and Xflmov.

Internally, imdnsX calls nloopdnsX to solve (89) to accuracy p.nc.tol with at most p.nc.imax

Newton steps, and this gives some rudimentary time–stepping control: subject to p.nc.hmin ≤
p.nc.h ≤ p.nc.hmax, if ‖G‖∞ > p.nc.tol after p.nc.imax steps, then p.nc.h is halved; if ‖G‖∞ >
p.nc.tol after iter<p.nc.imax iterations, then p.nc.h is doubled. However, altogether imdnsX is
mainly aimed at flowing from some IC to a stable steady state, and mesh adaptions along the way
may distort the time scale for the convergence, but once we approach a steady state transient errors
are automatically repaired.

Table 12: Functions for DNS via (89), and postprocessing

function remarks

p=imdnsX(p,nt,pmod,omod,smod) main interface for the implicit DNS scheme.
p=dnsmeshada(p) template for mesh adaptation to be alternated with imdnsX.
out=imdnsofu(p) output at each omodth time-step. Default (t, ‖u‖, p.fuha.outfu).
nloopdnsX solving (89)
Xflplot, Xflmov plot DNS results, and generate movie from DNS.

The script geomtut/vesicles/cmdsflow.m gives a number of examples, where we start near some
steady states from the continuations in Fig.21–Fig.23. For all flows we switch off all phase conditions
and zero out the PC Lagrange multipliers sx, . . . , r3, as they are only needed for robust steady state
continuation, while the positional and rotational invariance of the vesicles play no role for the flow.
Thus in all flows we set p.nc.nq=2 and p.nc.ilam=[6 2 3], where the primary continuation param-
eter is arbitrary as it is fixed, and p.fuha.qf=@qAVfl which implements (A − A0, V − V0) = (0, 0).
The results can be summarized as follows, see cmdsflow.m for details and comments, Fig.24 for a
typical example, and [Uec24] for movies of vesicle flows:

1. If we start with an X0 which is not “too deformed”, and choose suitable flow parameters tol,

hmin, hmax, and suitable alternating between imdnsX and dnsmeshada, then the flow takes us
to a stable steady state Xs.

2. Starting near strongly deformed but stable Xs (e.g., stomatocytes or pears with narrow necks),
the flow takes us back to the starting Xs.

3. Once the flow has converged to a (new) steady state Xnew, this can be used as a starting point
for continuation again.

54



4. Starting near (unstable) strongly deformed Xs (e.g., Xs an unstable stomatocyte or pear), it
may be difficult to handle the flow of the mesh and the flow may eventually fail.

5. Unless 4 happens, all our examples confirm the (in)stability of steady states as given in Figs.21–
23, and A and V are conserved to at least 6 digits.

(a1) (a2)

(b1) (b2)

Figure 24: Examples of Helfrich flows. (a1) c0 = 0, snapshots for flow from perturbation of unstable

stomatocyte (near Fig.21, 0/o-2/pt13) to oblate; (a2 behaviors of ‖Ẋ‖ and λ1,2. (b) Analogous for c0 = 1

(cf. Fig23); flow from (unstable) oblate to prolate.

4.2 Biocaps

In the demo biocaps we fix the boundary circle ∂X={x2 + y2=α2} in the x–y plane. Thus,

∆H + 2H(H2 −K) + 2c0K − 2c2
0H − 2λ1H = 0 on X, and (91a)

u = 0 and H − c0 + bκn = 0 on ∂X. (91b)

In our experiments we fix α = 1 and λ1 = 1/4, and first c0 = 1/2 and vary b, and want to start with
the upper unit hemisphere. Then H = K = 1 (choosing the inner normal for the hemisphere) and
κn = 1 and hence (91b) requires b = −1/2.

Remark 4.3 a) For X not closed it is an open problem for what parameters, and boundaries and
BCs, the minimization of L from (70) is a well–posed problem. In [Nit93], the following conditions on
c0, b and λ1 are posed for L with λ2 = 0 to be definite in the sense that L ≥ C0 for some C0 > −∞
for all connected orientable surfaces X of regularity C2 with or without boundary:

(i) λ1 ≥ 0, (ii) − 1 ≤ b ≤ 0, and (iii) − bc2
0 ≤ λ1(1 + b). (92)

This proceeds as in [Nit91] by scaling properties of E for various surfaces composed of planes (of
area A), cylinders (of lengths l and radius rc), and (hemi)spheres (of radius rS), and considering the

55



asymptotics of L as A, l → ∞ and/or rc, rs → 0. For instance, the condition (92)(i) arises most
naturally by considering X to contain a plane with A→∞, which for λ1 < 0 gives L→ −∞.

On the other hand, in the physics literature no restrictions on c0, b ∈ R are given, and in a given
problem a fixed ∂X and the BCs (74) or (75) may make L definite for much larger ranges than given
in (92). In our experiments below we do take parameters to rather extreme values, e.g., b = −4 in
Fig. 26, where we find interesting solutions.

b) For ∂X 6= ∅, and in particular for the cases of caps considered below, we are not aware of
analytic bifurcation results, except [PP22] which presents some results for caps in a slightly different
setting. c

(a)

-4 -2 0 2

b

-40

-20

0

E

1
20

9

20

(b)

-2 0 2

c
0

-15

-10

-5

0

E

34
11 14

Figure 25: Initial results for (71),(75) from biocaps/cmds1.m. In (a) we continue in b starting at b/pt1 from

the unit hemisphere with (α, λ1, c0, b) = (1, 1/4, 1/2,−1/2), to increasing b (branch b, black) and decreasing

b (branch bb, grey). On b we go to the flat disk (last sample), while on bb the hemisphere bulges out. This

is mainly intended for later continuation in c0, and in (b) we do so starting from bb/pt9 at b ≈ −1.66. This

gives the double well shape for E, with a short unstable segment between the two folds at c0 ≈ ±0.33. See

Fig. 26 for the cases of b ≈ −3.4 (bb/pt20) and b ≈ −4.

Fig.25(a) shows the continuation of the initial hemisphere in b. This is mainly intended for subse-
quent continuation in c0 at negative b, and (b) shows the case of b ≈ −1.66. The problem is symmetric
under (c0, X3) 7→ −(c0, X3), and in particular at c0 = 0 we have the flat disk as an exact solution
(for any b). See c00b/pt11 for a nearby solution with c0 ≈ −0.07, which lies between two folds with
exchange of stability. This unstable part will feature interesting bifurcations to non–axisymmetric
branches at more negative b, see Fig. 26, while the remainder(s) of the axisymmetric branches are all
stable, with the samples c00b/pt34 and c00/pt14 in 25(b) showing the typical behavior at strongly
negative or positive c0, respectively.

Remark 4.4 The only non–standard file in geomtut/biocaps is bdint.m, used to evaluate

∫
∂X

κg ds

by a trapezoidal rule, see (c) below. The main numerical challenges and used tricks for (91) are:
a) For the initial hemisphere we again use a subdivision and projection algorithm, followed by

one mesh–refinement at the boundary, as a good resolution near ∂X turns out helpful later. The
initial mesh then has np=2245 nodes, which later is refined to np > 6000. The mesh quality in all our
solutions stays quite good, i.e., δmesh < 20 for all solutions, and mostly δmesh < 10.

56



b) The boundary γ = ∂X is parameterized by arclength as γ(φ) = α(cos(φ/α), sin(φ/α), 0). Then

κ = γ′′ = −γ/α and the normal curvature on ∂X reads κn = − 1

α
〈N,X〉, which is used to implement

the BCs (91b).
c) The “integral” sum(K) over the discrete Gaussian curvature K always evaluates to 2πχ(X),

cf. Footnote 1. Thus we once more use Gauss-Bonnet

∫
X

K dS = 2πχ(X)−
∫
∂X

κg ds to compute the

energy E, where κg = sign(N3) 1
α
‖N × γ‖. c

(a) (b)

-2 -1 0 1

c
0

-30

-20

-10

0

E

9

16

55

24

-2 -1 0 1

c
0

2

4

6

8

10

12

 K
 d

S

55 24

16

9

(c)

-1.5 -1 -0.5 0

c
0

-15

-10

-5

0

5

10

E

30

10

20

Figure 26: Continuation of Fig. 25. (a,b) Continuation in c0 from bb/pt20, (α, λ1, b) = (1, 0.25,−3.4),

starting from c0 = 0.5, branches c01b (black, to decreasing c0) and c01 (grey, to increasing c0). There are

two BPs on the unstable part of c01b for c0 < 0, and the symmetric BPs for c0 > 0. The blue branch

c01b-1q has azimuthal wave number m = 1 and is stable after its fold. The red branch c01b-2q has m = 2

and connects to the symmetric BP at c0 > 0. The 2nd plot in (a) shows where the part b
∫
K dS of E

becomes dominant, taking into account the rather large |b|. (c) Similarly starting at bb/pt24 with b ≈ −4;

zoom of BD near upper left fold of the branch c02b (black) similar to c01b from (a). The blue branch is

qualitatively as in (a), but now the m = 2 branch c02b-2q (red) also folds back giving stable solutions, and

there is a secondary BP on it, giving the green branch c02b-2q-1.

In Fig. 26 we repeat the continuation in c0 from Fig. 25(b) at more negative b, namely b ≈ −3.4 in
(a) and b ≈ −4 in (b). For lower b, the unstable part of the c0 continuation expands, and we find two
(or more, for even lower b) BPs between the left fold and c0 = 0, with azimuthal wave numbers m = 1

57



and m = 2. As before, these bifurcations are double by S1 symmetry, and to continue the bifurcating
branches we set the usual rotational PC after two steps. The blue m = 1 branch then behaves similarly
in (a) and (b), i.e., it becomes stable after a fold at c0 ≈ −0.2 (b = −3.4) resp. c0 ≈ −0.27 (b = −4).
However, the m = 2 branch behaves differently: For b = −3.4 it connects to the symmetric BP at
c0 > 0. For b = −4, the red branch c02b-2q first shows a secondary BP to a branch (c02b-2q-1,
green) with broken Z2 symmetry, and then shows a fold at c0 ≈ −0.21 where it becomes stable. The
branch c02b-2q-1 also shows a fold, at c0 ≈ −0.11, after which however one unstable eigenvalue
remains, i.e., ind(X) = 1 at, e.g., c02b-2q-1/pt20 (last sample in (c)). The somewhat non–smooth
shape of the red and green branches is due to repeated and heavy mesh refinement, to, e.g., np = 5560
at c02b-2/pt30.

In Fig. 27 we continue some m = 1 solutions from the blue branch in Fig. 26(b) in b and in λ1, with
fixed c0. The unstable black solutions with c0 ≈ −0.35 in (a) continue to b ≈ −1.8, where the branch
bifurcates from the axisymmetric branch. This is in contrast to Fig. 25 where for the continuation in b
at c0 = 1/2 no bifurcations from the axisymmetric branch were found. The blue branch in Fig. 27(a)
with c0 ≈ −0.24 shows a fold at b ≈ −3.11. From these and similar experiments, m = 1 solutions
do not seem to exist for b somewhat larger than −2, and no stable ones for b larger than −3. In
Fig. 27(b), the black unstable branch continues to large λ1, but the stable blue branch again shows
a fold, at moderate λ1 ≈ 0.44. This indicates that solutions of this type also do not continue to
“large” λ1. Nevertheless, while the physical (biological) significance of the parameter regimes and
solutions in Figs. 25–27 certainly needs to be discussed, mathematically we have obtained some stable
non–axisymmetric solutions.

(a)

-3 -2

b

-8

-6

-4

-2

0

E

8

10 16

14

0

0

(b)

0.2 0.4 0.6 0.8

1

-8

-6

-4

-2

E

0

8

15

0

11

Figure 27: cmds2.m, experiments with continuation of m = 1 solutions from Fig. 26 in b (a), and in λ1 (b).

The starting points in (a) are from c ≈ −0.35 for the black branch bc1, and from c ≈ −0.24 for the blue

branch bc2 (this is the same solution as c01b-1q/pt16). The continuation in λ1 in (b) has the same starting

points and the same colors. The unstable branch (now with fixed (c0, b) = (−0.35,−3.4)) continues to large

λ1, but the blue branch with fixed (c0, b) = (−0.24,−3.4) has a fold at λ1 ≈ 0.44.

Figure 28 shows some results from biocaps/cmdsflow.m for the numerical flow for (91), based
on imdnsX, cf.§4.1.3, with the main difference to the flow for closed vesicles is that we now have no
constraints. The flows behave as predicted from the BD Fig.26, and once the amplitude of the flow
has dropped below 10−3 we can use the obtained state as an initial guess for continuation.

58



(a1) (a2)

(b1) (b2)

Figure 28: Flows starting from perturbations of (a) the flat disk at c0 = −0.5, and (b) c01b-1q/pt10

with c0 = −0.316 (unstable). For both we need repeated mesh-adaptation to obtain convergence to the

larger amplitude solution on c00b in (a), and to the stable solution on c01b-1q after the fold. At the end

of the flows, both solutions are sufficiently close to the respective steady state to start continuation. See

biocaps/cmdsflow.m for details.

5 Summary and outlook

We explained the basic setup of the pde2path extension library Xcont for continuation of 2D subman-
ifolds X (surfaces) of R3, and gave a number of examples. These were partly introductory, e.g. the
spherical caps in §3.1, partly classical, e.g., Enneper’s minimal surface in §3.2.3, the nodoids in §3.3.2
and §3.4, the TPS in §3.5, and the closed vesicles in §4.1, and partly rather specific such as the Plateau
problem in §3.2.2 or the 4th order Helfrich type caps in §4.2 (and cylinders in §B. Besides [Bru18],
and to some extent [Bra96], there seem to be few numerical continuation and bifurcation experiments
for such geometric problems for 2D surfaces, i.e., without imposing some axial symmetry, and we are
not aware of a general software for such tasks.

The basic setup for all our problems (except those of 4th order) is similar: We consider CMC
surfaces, which mainly differ wrt constraints and/or boundary conditions. Along the way we explained
a number of techniques/tricks which we expect to be crucial in many applications. A major problem
for continuation (over longer parameter regimes) is the mesh handling as X changes and hence the
mesh distorts. We explained how this (often) can be abated via moving of mesh points (moveX),
refinement (refineX which sometimes should be combined with re–triangulation by retrigX) and
coarsening (coarsenX), and coarsening of degenerate triangles (degcoarsenX), although the choice of
the parameters controlling these functions often requires some trial and error. In any case, X bulging
out is usually harmless, but bulging in (the development of necks) is more challenging.

This is a first step. With the demos we hope to give a pool of applications which users can use
as templates for their own problems, and we are curious what other applications users will consider,
and of course are happy to help if problems occur. As indicated above, our own further research, to
be presented elsewhere, includes:

� Further classical minimal surfaces (and CMC companions) such as Schwarz H and Scherk surfaces
(surface families);

� Alternate models for closed vesicles, which in contrast to the SC model from §4.1 show non–

59



axisymmetric minimizers;
� Coupling of membrane curvature and morphogen dynamics or reaction–diffusion equations as

in, e.g., [MMCRH13, TN20].

A Spheres, hemispheres, VPMCF, and an alternative setup

A.1 Spheres

The demo spheres, containing only the (somewhat minimally necessary) files sphereinit.m, sG.m,
getM.m, and cmds1.m, is mostly meant to illustrate volume preserving mean curvature flow (VPMCF)
near spheres, see Fig. 29.24 We refer to sphereinit.m and cmds1.m for comments (and to geomflow.m

and vpmcff.m from libs/Xcont for the VPMCF) and here only note:

(a) (b)

20 40

V

-1

-0.9

-0.8

-0.7

-0.6

-0.5

H

30

0.5 1 1.5 2

r

10

20

30

40

50 r*A/3

V

(c)

0 2 4

t

65

70

75

V

A

Figure 29: Results from sphere/cmds1.m. (a) Continuation of a sphere in V , with comparison of A and
V . (b) An IC for VPMCF from a perturbation of S3/pt30, with (c) solutions at t = 1 and t = 5, and a
time–series for V,A; V is conserved to within 0.5%.

1. The comparison between rA/3 and V in Fig. 29(a) shows a very small error which indicates that
the solutions are good approximations of spheres.

2. For convex closed initial X (meaning that X = ∂Ω for a convex domain Ω ⊂ R3), the VPMCF
converges to a sphere. See also, e.g., [ES98] for theoretical background. This also holds for
“slightly” non–convex initial X as in Fig. 29(b).25

3. Our (explicit Euler) implementation of the VPMCF does not conserve V exactly, but with “rea-
sonable accuracy”, i.e.: Even for quite “non–spherical” initial X(0), the error |1−V∞/V0|<0.01,
where V∞ = limt→∞ V (t) < V0 in all our tests, i.e., V∞ is always slightly smaller than V0.26

24Additionally, the demo contains convtest.m for convergence tests, see Fig. 4.
25In detail, X(0) here is obtained as X(0) = Sr0 + 0.4(sin(ϑ)(|x| − r0) + ξ)N , where ϑ is the azimuth, and ξ =

0.2(rand− 0.5) with rand ∈ [0, 1] a Matlab random variable on each node.
26This “volume–accuracy” of geomflow for VPMCF depends weakly on the Euler–stepsize dt, and more strongly on

the fineness of the discretization of X. This can be checked by changing sw in spheres/cmds1.m for initializing X.

60



4. During continuation, the position of X is not fixed, i.e., we have the threefold (in the discrete
setting approximate) translational invariance in x, y, z, and hence always a three-dimensional
(approximate) kernel. This could be removed by suitable translational PCs (see the demo
hemispheres). However, the approximate kernel is not a problem for the continuation here
since in the Newton loops the right hand sides are orthogonal to this kernel. As here we are
mostly interested in the VPMCF, for which the translational invariances are irrelevant, we refrain
from these PCs to keep the demo sleek and simple.

A.2 Hemispheres

In the demo hemispheres we continue in volume V hemispheres X sitting orthogonally on the z = 0–
plane, i.e.,

∂rX3 = 0 where r =
√
x2 + y2, (93)

and test VPMCF for perturbations of such hemispheres, see Fig. 30. Additionally we use the PCs∫
X

N1 dS =

∫
X

N2 dS = 0, X = X0 + uN0, (94)

to fix the translational invariance.

(a) (b) (c)

5 10 15 20 25

V

-1

-0.9

-0.8

-0.7

-0.6

-0.5

H

50

1 1.5 2

r

5

10

15

20

25
r*A/3

V

(d)

0 1 2

t

28

30

32

34

36

38

V

A

Figure 30: Results from hemisphere/cmds1.m. (a) Continuation of hemisphere in V , with sample at end.
(b) Comparison of A and V for (a). (c) A perturbation of hsr1/pt50 as IC for VPMCF. (d) Solutions at
t = 1 and t = 2, and time–series for V,A from (c,d); V conserved to within 0.8%.

Compared to the spheres in §A.1 this requires a few more files, listed in Table 13. The PCs (94)
(and u–derivatives) are implemented in qf2, qjac2, and the rhs G(u) = H−H0 in sGhs is augmented

to G̃(u) = H−H0 +sxN1 +syN2 with multipliers sx, sy. These stay O(10−6) during continuation, and
the only effect of the construction is that the 2D kernel of translational invariance of ∂uG is removed

61



Table 13: Files in pde2path/demos/geomtut/hemispheres.

cmds1.m continuation in V , and VPMCF flow test.
hsinit.m, sGhs.m init and rhs
qf2.m, qjac2.m PC (94), and derivative
getN.m mod of getN, correction at z = 0
diskpdeo2.m mod of (pde2path–)default diskpdeo2.m to have a finer mesh at r = 1.

from the linearization of the extended system (G̃, q). See the end of cmds1.m for further comments.27

The BCs (93) allow motion of ∂X in the “support–plane” z = 0, and are implemented as

r(idx)=grXz*(X(idx,1).^2+X(idx,2).^2)(
!

= 0)

in sGhs, where as usual idx are the boundary indices, and grXz is the z–derivative (operator) on X,
as before obtained from grX=grad(X,p.tri) and interpolation to the nodes. This forces the x, y–
coordinates of the points on X directly above the z = 0 layer to also fulfill x2 + y2 = 1, i.e., we
obtain a “cylindrical socket” for the hemispheres. To mitigate this effect, in hsinit we initialize with
a somewhat specialized mesh over the unit disk D with higher density towards ∂D, which is then
mapped to the unit hemisphere via z =

√
1− x2 − y2. Nevertheless, after continuation to larger V ,

which is combined with some mesh–adaptation by area, we obtain a mismatch between rA/3 and V ,
see Fig. 30(a,b), and compare Fig. 29(b).

In Fig. 30(c,d) we give an example of VPMCF from a perturbation of hs1r/pt50, here of the form
X|t=0 = X + 0.4(cos(ϑ)(max(z)− z + 0.1(rand− 0.5))N , where ϑ is the angle in the z = 0 plane. We
do not use any BCs in the rhs vpmcff.m. Instead, we use the correction

N(p.idx,3)=0; N=normalizerow(N); (95)

in getN.m, to let N lie in the x–y–plane, cf. Remark 3.8(b) for a similar trick. Without (95), the
continuation of hemispheres works as before, but the solutions of the VPMCF start to (slowly) lift
off the z = 0 plane, and then (quickly) evolve towards a planar X such that also V → 0. With (95),
the solutions flow back to hemispheres, and V is again conserved up to 0.5%, and “after convergence”
(e.g., from X|t=2) we can start continuation again, showing consistency.

A.3 Spherical caps via 2D finite elements

For the sake of completeness and possible generalization, we show how the spherical caps with DBCs
can be treated in a classical FEM setting. Let Ω ⊂ R2 be a bounded domain and X0 be a surface
with parametrization φ0 : Ω→ R3, and as before define a new surface via X = X0 + uN0, u : Ω→ R.
Then (1) reads

G(u,H, V ) =

(
H(X)−H
V (X)− V

)
= 0, with u|∂Ω = 0. (96)

This is a quasilinear elliptic equation for u : Ω → R, and after solving (96) we can again update
X0 = X0 + uN0 and repeat. To discretize (96) we now use the FEM in Ω. The main issue is how
to compute H (and A and V and similar quantities) without the gptoolbox, and Table 14 lists the
pertinent files.

27In cmds1.m we also monitor the “positions” (x0, y0) of X defined as x0 =
∫
X
X1 dS, y0 =

∫
X
X2 dS. These behave

as expected, namely: very small drifts for continuation without PCs, but no drifts for continuation with the PCs (94).

62



Table 14: Overview of files in geomtut/spcap2.

cmds1 Main script; initialization, continuation, plotting.
spcapinit Initialization, rather standard, except for p.X=[x,y,0*x] for the initialization of X.
oosetfemops Setting mass matrix M , and first order differentiation matrices which are used to com-

pute H in sG (via getmeancurv).
sG, qV rhs and volume constraint.
getN compute normal vector.
getA, getV compute A(X) and V (X), overload of Xcont functions.
getmeancurv H from (11), see also get1ff, get2ff for 1st and 2nd fundamental forms.
e2rs ElementToRefineSelector function, based on triangle areas.
cmcbra, pplot like Xcont/cmcbra and Xcont/pplot, but overloaded since p.tri not present here.
getGupde overload of library function to deal with larger bandwidth.

To implement H(X), X = X0 + uN , we here directly use the definition

H =
1

2

h11g22 − 2h12g12 + h22g11

g11g22 − g2
12

of the mean curvature based on the fundamental forms of X. This is brute force and in particular
neither confirms to a weak (FEM) formulation nor allows simple Jacobians, see Remark A.1.

Remark A.1 a) In getN and get1ff we compute the nodal values for Xx and Xy (via weighted aver-
ages of the adjacent triangles), and the corresponding nodal values of N and gij; this is needed here as
Xx and Xy appear nonlinearly in N , and similarly gij appear nonlinearly in H. On the other hand, the
second derivatives hij only appear linearly in H, and hence we take the second derivatives in get2ff us-
ing the element differentiation matrices Kx and Ky. Thus, H in r=-2*H+p.mat.M*(H0*ones(p.nu,1))

in sG is (an approximation of) the element wise mean curvature, and hence H0 must also be multiplied
by the mass matrix p.mat.M.

b) Since G as implemented uses products of differentiation matrices, the associated Jacobian ∂uG
has more bandwidth than before, i.e., the sparsity pattern S of ∂uG is that of M2, rather than that
of M , and thus we use S = M2 > 0 in getGupde. c

function p=spcapinit(nx,par) % spherical cap , init , legacy setup

p=stanparam (); p.sw.spcalc =0; p.sw.bifcheck =0; % set stanparam , overwrite some

3 pde=diskpdeo2(1,nx ,round(nx/2)); % disk preimage discretization

p.pdeo=pde; p.np=pde.grid.nPoints; p.nu=p.np; p.nt=pde.grid.nElements;

p.sol.xi=1/p.nu; p.nc.neq=1; p.sw.sfem=-1; % store dimensions

p.fuha.outfu=@cmcbra; p.fuha.e2rs=@e2rs; % branch data , refinement selector

p.sw.Xcont =1; p.plot.pstyle =-1; % call userplot for plotting

8 po=getpte(p); x=po(1,:) ’; y=po(2,:) ’; u=0* ones(p.np ,1); % initial soln

p.u=[u; par]; p.X=[x,y,0*x]; % set IC, including X

p=oosetfemops(p); % here constant mass and stifness matrices (until mesh changes)

p.plot.auxdict ={’H’,’V’,’alpha ’,’A’}; p.u(p.nu+4)=getA(p,p.u); % initial area

function p=oosetfemops(p) % legacy setting , precompute FEM matrices

gr=p.pdeo.grid; fem=p.pdeo.fem; [~,p.mat.M,~]= fem.assema(gr ,1,1,1); % mass

E=center2PointMatrix(gr); % to map elem differentiation matrices to nodal ones

4 p.mat.p2c=point2CenterMatrix(gr); % to interpolate from nodes to elem centers

[Dx,Dy]=fem.gradientMatrices(gr); p.mat.Dx=E*Dx; p.mat.Dy=E*Dy;

p.mat.Kx=fem.convection(gr ,[1;0]); p.mat.Ky=fem.convection(gr ,[0;1]);

p.idx=unique(p.pdeo.grid.e(1:2 ,:)); % store bdry -indizes for DBCs

function r=sG(p,u) % PDE rhs

par=u(p.nu+1:end); H0=par(1); u=u(1:p.nu); al=par(3); % split in par and PDE u

3 N0=getN(p,p.X); X=p.X+u.*N0; H=getmeancurv(p,X); % mean curv.based on FEM

r=-2*H+p.mat.M*(H0*ones(p.nu ,1)); r(p.idx)=u(p.idx)-al; % residual , and DBCs

63



1 function H=getmeancurv(p,X) % mean curv based on 1st and 2nd fundamental form

[E,F,G]= get1ff(p,X); [L,M,N]= get2ff(p,X); H=0.25*(L.*G-2*M.*F+N.*E)./(E.*G-F.^2);

function V=getV(p,u)

u=u(1:p.nu); N0=getN(p,p.X); X=p.X+u.*N0;

3 N=cross(p.mat.Dx*X,p.mat.Dy*X,2); % normal at X, NOT normalized

V=sum(p.mat.M*(dot(X,N,2)))/3;

Listing 16: spcapinit, oosetfemops, sG, getmeancurv and getV from spcap1. See sources for, e.g.,
get1ff, get2ff, and the Element2RefineSelector function e2rs used for mesh adaptation.

Despite the caveats in Remark A.1, we can now set up a simple script (Listing 17) and produce
a continuation diagram and sample plots fully analogous to §3.1. For mesh–refinement, to select
triangles to refine we use the areas on X, see e2rs, but otherwise the adaptive mesh refinement works
as usual in the legacy setting of pde2path via oomeshada.

1 %% cmc spherical caps , init; pars will be overwritten in spcapinit

nx=10; al=0; h0=0; v0=0; a0=0; par=[h0; v0; al; a0]; % initial pars

p=spcapinit(nx,par); plotsol(p); p=setfn(p,’cap1’); p.sol.ds =0.01;

p.nc.dsmax =0.2; p.nc.usrlam =[2 4]; p.plot.bpcmp =1;

p.nc.ilam =[2 1]; p.nc.nq=1; p.fuha.qf=@qV; p.fuha.qfder=@qVjac; % cont V, free H

6 p.sw.jac=0; p.sw.qjac =1; % using numerical Jacs for G, and approximate q_u

p=cont(p,10); % go

%% example of mesh -adaption; loading soln useful for testing parameters

% such as ngen (number of adaption loops) and sig (frac of triangles to refine)

p=loadp(’cap1’,’pt10’,’cap1r ’); p.nc.ngen =1; p.nc.sig =0.2; p=oomeshada(p);

11 p=cont(p,20); % continue refined solution

Listing 17: Short script cmds1.m from geomtut/spcap.

As already said, the main advantage of this setup is simplicity in the sense that the function
getmeancurv (based on get1ff and get2ff) is a direct translation of the differential geometric def-
inition. Moreover, we can work with fixed preassembled differentiation matrices (independent of X)
as long as the mesh (in Ω) is fixed. The main disadvantage is that this implementation of (11) is not
a weak form but mixes FEM and FD differentiation matrices.

B Biocylinders with clamped BCs

In the demo biocyl we consider the Helfrich SC functional (69) for a cylindrical topology along the
x–axis with BCs (74). The equation and BCs thus are

∆H + 2H(H2 −K) + 2c0K − 2c2
0H − 2λ1H = 0, (97a)

X2
2 +X2

3 |X1=±1 = α2, and ∂xX2|X1=±1 = ∂xX3|X1=±1 = 0. (97b)

For c0 = 0 we have the explicit family

Xcyl,α = (x, α cosφ, α sinφ), x ∈ [−1, 1], φ ∈ [0, 2π), with λ1 =
1

4α2
, (98)

of Helfrich cylinders, and [DDG21] proves various existence results for axisymmetric solutions near
(98) and in other regimes in the α–λ1 plane. See also [VDM08] for other shapes with cylindrical
topology, which fit into our setting by prescribing other contours at x = ±1 instead of the circles of
radius α in (97b).

The external parameters for (97a) are (α, λ1, c0), and continuation in any of these yields interesting
results. We first continue in c0 at fixed α = 1, since we believe this is the numerically most challenging
case due to the exact solution (99) below. Subsequently we continue in α, and again in c0 at different
α, and finally in λ1, always starting from the Helfrich cylinder (98).

64



Table 15: Scripts in pde2path/demos/geomtut/biocyl.

cmds1.m Continuation of Xcyl,α in c0, (α, λ1) = (1, 1/4), Figs. 31 and 32
cmds2.m Continuation of Xcyl,α in α, (c0, λ1) = (1/4, 1), Fig. 33.
cmds3.m Continuation of “big” and “small” cylinders Xcyl,α in c0, i.e., α = 1.4 and α = 0.6, Fig. 34.
cmds4.m Continuation of Xcyl,α like solutions in λ1, (α, c0) = (1, 0.7), Fig. 36.
cmds4b.m Like cmds4.m but with (α, c0) = (1, 0), Figs. 35 and 37.

Table 15 lists the command scripts in biocyl/. Besides cylinit.m, sG.m, and getM.m (see Re-
mark 4.1), we then additionally have the PC qfrot.m and its derivative qfrotder.m, and the scripts
bdmov1.m and bdmov2.m to produce movies of the BDs in Fig. 36. In hcylbra.m we put A, V,E, λ1A
and the mesh–quality data on the branch. In cylinit.m we set p.sw.Xcont=2, such that the colors
in solution plots mainly give some visual structure to X, but do not in general give the continuation
direction uN , cf. the remarks after (36). The PC multiplier |srot| < 10−4 on all the branches, and in
all cases the final u plotted is of order 10−6 or smaller.

B.1 Continuation in the spontaneous curvature

In cmds1.m we fix α = 1, and start with the Helfrich cylinder (98), hence λ1 = 1/4. We choose
a rather coarse uniform initial mesh of np=1770 points, and first continue to c0 < 0, yielding the
branch c0b in Fig. 31. The solutions contract in the middle and via two folds produce a bistability
region around c0 = −6.25, but otherwise no bifurcations. As the neck thins, we refine the mesh based
on e2rsshape1, cf. (??), with p.sw.rlong=1 and combined with retrigX to avoid obtuse triangles,
cf. Remark 2.6. The 2nd plot in (a) shows the distortion δmesh, with refinements at pt25, pt35 and
pt40, and the second row in (b) shows rather strong zooms into the necks, illustrating the refinement
step from pt35 to pt36, and the reasonable mesh in the neck at point pt45.

(a) (b)

-8 -4

c
0

9

10

11

12

A 20

30
45

-8 -4

c
0

10

15

20

25

35
45

Figure 31: Results for (??) from biocyl/cmds1.m. (α, ε) = (1, 1/4) fixed, continuation to c0 < 0, with

a bistability region near c0 = −6.25. Initially uniform mesh of np = 1770 points, and the 2nd plot in (a)

indicates that with suitable refinement (at pt25 and pt35, to np = 3561) the meshes stay good. Samples in

(b), with zooms of the necks to illustrate the meshes.

In Fig. 32 we continue to c0 > 0. This is initially easy, but after a first fold near c0 ≈ 1.3 and then
decreasing c0 below c0 ≈ 0.15 it becomes difficult to maintain mesh distortion δ < 100. We give the

65



(a) (b)

0 0.5 1

c
0

11.5

12

12.5

A

33

46

5

26

10

0 0.5 1

c
0

4

6

8

10

12

14

E
46

26

10

5

33

0 0.5 1

c
0

50

100

150

200 46

33

26
5

(c) (d)

Figure 32: Further results from biocyl/cmds1.m, (α, ε) = (1, 1/4), continuation of Helfrich cylinder to c0 > 0

(blue branch c0, c0r after mesh refinement), with bifurcation to c1r (red). (a) BDs of area A, energy E, and

mesh distortion δmesh. (b) A full sample at c0/pt10, different colormap (yellow>pink) for better visibility

of mesh. (c) further samples, cut at x = 0. (d) zoom into solution close to X2HS. On c0, results after

pt33 become somewhat mesh–dependent, but our experiments suggest that the branch connects to X2HS at

c0 = 1/2 (with c0r/pt46 shortly before that connection).

full result of our continuation but remark that the behavior on c0 (c0r after refinement, to np = 3130
at pt46) after pt30, say, becomes mesh dependent. First, however, at c0 ≈ 0.94, we find a BP to a
non–axisymmetric branch (c1, red), 3rd sample in (c). We then get a second fold at c0 ≈ 0.08 ± η,
with η ∈ (−0.02, 0.02) dependent on the mesh. Relatedly, the further continuation becomes somewhat
non–smooth and quantitatively depends on the mesh, but qualitatively we get similar behavior for
different meshes, namely: The neck becomes thin and short, and the solutions seem to approximate
a solution

X2HS consisting of two hemispheres with radius 1, centered at (x, y, z) = (±1, 0, 0), (99)

and hence touching at (0, 0, 0), see c0r/pt46, at c0 = 0.47. X2HS is an exact solution of (97) with
λ1 = 1/4 at c0 = 1/2, and given our various experiments with mesh refinement we believe that the
branch c0r connects to X2HS. However, the third plot in (a), and the samples in (c) (at c0 ≈ 0.47,
shortly before the supposed connection to X2HS) show how the mesh quality seriously degrades as we
approach the supposed connection.

Also, we have, e.g., ind(X) = 3 at pt33 (with one unstable direction from the fold at c0 ≈ 1.3, and
two from the double BP at c0 ≈ 0.94), while the “almost–X2HS”–solutions near pt46 have ind(X) = 0,
i.e., are stable. Hence, since ind(X) should decrease by one at the (supposed) fold between pt33 and
pt46, we expect another double BP between pt33 and pt46. However, the behavior of the branch is
quantitatively mesh–dependent also near the left fold, and while the changes in ind(X) are detected,
the bisection loops to localize the fold and/or the BPs do not converge. Thus, altogether the behavior

66



after pt33 is conjectured. On the other hand, for c0 ∈ (0.3, 0.5), say, and in particular near pt46, the
solutions like pt46 stay stable under mesh refinement. In any case, a pinch–off (topological change)
which should occur after pt46 as we approach X2HS cannot be resolved with our methods, but probably
requires the use of some phase field method, see, e.g., [DLW06].28

The results for c0r up to pt33 are mesh independent, including the bifurcation of the non-
axisymmetric branch c1 at c0/bpt1. The mesh then also degrades on the non–axisymmetric branch
(c1, and in a similar way like on the branch c0 but at larger c0), and since next we focus on non–
axisymmetric branches in a slightly different setting we do not further pursue c1 here.

B.2 Intermezzo: Other radii

In cmds2.m we continue Xcyl,α in α, with fixed (c0, λ1) = (0, 1/4), see Fig. 33. This shows no bifur-
cations. Numerically, the case α ↘ 0 is challenging due to boundary layers developing at x = ±1,
see [Gru12]. Alternating continuation and mesh adaptation based on e2rsshape1 we can reliably
continue to α = 0.05 and slightly further.

0 2 4

8

10

12

14

16

E

8

40

10

Figure 33: Results for (97) from cmds2.m, continuation in α.

In cmds3.m and Fig. 34 we repeat the continuation in c0 from Fig. 31 and Fig. 32 for different
starting cylinders Xcyl,α, namely α = 1.4 in Fig. 34(a) and α = 0.6 in (b–d). The main differences to
the case α = 1 are as follows: For both, α = 1.4 and α = 0.6, continuing to negative c0 we no longer
have the two folds and associated bistability range as in Fig. 31, and the branches seem to extend to
arbitrary large negative c0. We refrain from plotting this for α = 1.4 in (a), and for α = 0.6 in (b)
we mainly remark that large negative c0 yields very long and thin necks, which can be handled with
adaptive mesh refinement as in Fig. 31.

Continuing to positive c0, for α = 1.4 in (a), the main difference to Fig. 32 is that the branch c0r

only has one fold (at c0 ≈ 2.3) and then continues to negative c0, see b/c0r/pt51. The difference to
α = 1 is that a solution like X2HS no longer exists, i.e., two hemispheres of radius α = 1.4 (or any
α 6= 1) cannot be near a (genus 1) cylinder type solution. Additionally, the larger radius makes the
continuation of the red non–axisymmetric branch b/c1qr easier wrt to mesh handling, see the last
sample in (a). For α = 0.6 in (c,d), the smaller radius gives a “pearling” behavior after the fold on the
blue branch, and it seems likely that the branch s/c0r continues to a solution of type hemisphere–
sphere–hemisphere, which would give similar problems as discussed for X2HS in Fig. 32. Here we
stop the continuation after pt30 (third sample in (d)), as further continuation requires excessive
mesh adaptation and the solutions are unstable anyway. The pearling shape is also inherited by the
non-axisymmetric branch s/c1 (last sample in (d)).

28For Neumann BCs (74), hemispheres are highly degenerate in the following sense: Setting up (97) over a single
circle at wlog at X1 = 1, and wlog with (α, λ1, c0) = (1, 1/4, 1/2) the single unit hemisphere is again an exact solution,
but we are not able to continue this in λ1 or c0, i.e., it seems isolated. This is different for BCs (75), see §??.

67



(a)

-1 0 1 2

c
0

20

40

60

E

5

20

51

15

(b) (c)

-15 -10 -5 0

c
0

200

400

600

800

1000

E

30

10

0 1 2

c
0

4

6

8

10

E

30

15

20

5

(d)

Figure 34: cmds3.m, continuation in c0 for (α, λ1) = (1.4, 1/5.6) in (a), and (α, λ1) = (0.6, 2.4) in (b–d).

B.3 Continuation in surface tension

In cmds4.m we return to fixed α = 1 and continue in λ1, starting at λ1 = 0.25 and c0 = 0.7 corre-
sponding to Fig 32, and in cmds4b.m we repeat this for c0 = 0, starting from the genuine Helfrich
cylinder Xcyl,α. In both cases, for increasing λ1 the solutions initially only slightly change shape, but
at larger λ1 (near λ1 = 8 for c0 = 0, and near λ1 = 4 for c0 = 0.7) we get an S–shaped bistability
region due to two consecutive folds, similar to the case of c0 ≈ −6 in Fig. 31 (with fixed λ1 = 1/4).29

However, we find no bifurcations to non–axisymmetric branches. The case of decreasing λ1 is more
interesting, and in Fig. 35 we only show the basic result for c0 = 0 and large λ1 > 0 for completeness.

(a) (b)

5 10 15 20

1

10

11

12

A

7

20
40

5 10 15 20

1

6

8

10

12

m

7

20

40

Figure 35: cmds4b.m, continuation of Xcyl,α in λ1, (c0, α) = (0, 1).

29Such folds were already found in [Doe17, §6.3] for c0 = 0 in the 1D axisymmetric setting.

68



(a) (b) (c) (d)

-1 0 1

1

15

20

25

30

A

8 32 5

36

30

34
36

(e) (f)

Figure 36: cmds4.m, continuation in λ1 at c0 = 0.7. In (a): axisymmetric branch l0b (dark blue, sample in

(b)), l0 (blue, sample in (c))), and four bifurcating branches, l1 (red, refined to l1qr, samples in (d) and (e),

with zoom), l2 (magenta), l3 (orange), l4 (green), samples in (f). The kinks of l1–l4 are due to adapative

mesh refinement every 5th step (after pt10), from np = 2700 to np ≈ 3600 at the end of each branch.

Even if λ1 < 0 is in general unphysical, see Remark ??(b), continuation to λ1 < 0 yields interesting
results, in particular for c0 > 0. For both, c0 = 0.7 and c0 = 0, for λ1 < 0 the solutions start to bulge
out in the “middle” (near x = 0), and there are folds around λ1 = −2 after which we obtain pronounced
“tire shapes”. Moreover, we obtain bifurcations to Dm–symmetric branches, with increasing angular
wave numbers m = 1, 2, 3, 4, . . .. For c0 = 0.7, the bifurcating branches return to λ1 > 0, such that
in Fig. 36(a–f) we obtain four new solutions at λ1 = 0.25. For c0 = 0, the Dm symmetric branches
initially behave similarly, but do not reach λ1 > 0 and instead asymptote to λ1 = 0−, with arbitrary
large A, see Fig. 37 and again Remark ??(b). Therefore we put c0 = 0.7 first in Fig.36. Nevertheless,
for both c0 = 0 and c0 = 0.7, the BCs do not allow “large portions of planes” as solutions and thus
yield the folds of the blue branches. Moreover, E stays bounded below (see Fig. 38), and also for
c0 = 0 in Fig. 37 and Fig. 38(b) it seems that λ1A→ 0 as λ1 ↗ 0, i.e., that the area grows slower than
|1/λ1|.

The main issue in both, cmds4.m and cmds4b.m (which is essentially a copy of cmds4.m, with
a different start (at c0 = 0) of the blue branch and hence directory names starting with 0), is the
mesh adaptation for the strong budding of the Dm symmetric branches. In detail, to compute the
branch, e.g., l1 (m = 1, sample in Fig. 36(d)) with refinement (sample in (e)) we proceed as follows.
After branch switching at l0/bpt1 (double, by rotational symmetry, but again we just choose the
first of the two kernel vectors) we do a few steps without rotational PC, which we then switch on.
Subsequently, we continue with mesh adaptation based on area every five continuation steps. This
works very robustly, also on the branches with m = 2, 3, 4 and similarly for c0 = 0 in Fig. 37, and
allows continuation to large buds. This shows again that bulging out (i.e., expanding) is typically not
problematic wrt meshes, though at mesh–refinement we obtain the kinks on the m = 1, 2, 3, 4 branches
in Fig. 36(a). To have smoother branches we would need more frequent but less strong refinement,
but this is clearly not critical.

69



-1.5 -1 -0.5 0

1

20

40

60

80

A

70

40

25

Figure 37: cmds4b.m, continuation in λ1 at c0 = 0; color code as in Fig.36, and, e.g., np=4400 at 0l1qr/pt40.

The branches in Fig. 36 can be continued further by alternating cont and refineX, but this
requires some fine–tuning of the cont–refineX loop parameters, and eventually the continuation of
the branches l*qr fails again due to bad triangles in the necks. Thus, to keep the script cmds4.m

simple we stop at the given points. Finally we note that the stabilities in Fig. 36 and Fig. 37 are as
expected, namely ind(X) = m on the Dm branch(es).

(a) (b)

-1.5 -1 -0.5 0 0.5 1

1

-20

-10

0

10

20

E

36

8

5
26

36
30

34

-0.4 0 0.4

1

-10

-5

0

5

10

1
 A

-1.5 -1 -0.5 0

1

-20

-10

0

10

20

30

E

25
40

70

-0.3 -0.2 -0.1

1

-10

-5

0

1
 A

Figure 38: Energies E and the part λ1A of E along the branches of Fig. 36; (a) c0 = 0.7, (b) c0 = 0.

References

[AHLL88] S Andersson, S. T. Hyde, K Larsson, and S. Lidin. Minimal surfaces and structures: from
inorganic and metal crystals to cell membranes and biopolymers. Chemical Reviews, 88(1):221–
242, 1988.

[ALP99] L. J. Aĺıas, R. López, and B. Palmer. Stable constant mean curvature surfaces with circular
boundary. Proc. Amer. Math. Soc., 127(4):1195–1200, 1999.

[BF67] R. Bowen and St. Fisk. Generations of triangulations of the sphere. Mathematics of Computa-
tion, 21:250–252, 1967.

[BGBC22] M. Bottacchiari, M. Gallo, M. Bussoletti, and C. Casciola. Activation energy and force fields
during topological transitions of fluid lipid vesicles. Commun. Phys., 5:12, 2022.

[BGN15] J. Barrett, H. Garcke, and R. Nürnberg. Numerical computations of the dynamics of fluidic
membranes and vesicles. PRE, 92:052704, 2015.

[BGN20] J. Barrett, H. Garcke, and R. Nürnberg. Parametric finite element approximations of curvature-
driven interface evolutions. In Geometric partial differential equations. Part I, volume 21 of
Handb. Numer. Anal., pages 275–423. Elsevier, Amsterdam, 2020.

70



[BGNZ22] Weizhu Bao, H. Garcke, R. Nürnberg, and Quan Zhao. Volume-preserving parametric finite
element methods for axisymmetric geometric evolution equations. J. Comput. Phys., 460:Paper
No. 111180, 23, 2022.

[BNP10] A. Bonito, R. H. Nochetto, and M. S. Pauletti. Geometrically consistent mesh modification.
SIAM J. Numer. Anal., 48(5):1877–1899, 2010.

[Bol11] M. Bollhöfer. ILUPACK V2.4, www.icm.tu-bs.de/~bolle/ilupack/, 2011.

[Bra96] K. Brakke. The surface evolver and the stability of liquid surfaces. Philos. Trans. Roy. Soc.
London Ser. A, 354(1715):2143–2157, 1996.

[Bra23] K. Brakke. Triply Periodic Minimal Surfaces, 2023. http://facstaff.susqu.edu/brakke/

evolver/examples/periodic/periodic.html.

[Bru18] N. D. Brubaker. A continuation method for computing constant mean curvature surfaces with
boundary. SIAM J. Sci. Comput., 40(4):A2568–A2583, 2018.

[BT84] M. J. Beeson and A. J. Tromba. The cusp catastrophe of Thom in the bifurcation of minimal
surfaces. Manuscripta Math., 46(1-3):273–308, 1984.

[CK97] T. K. Callahan and E. Knobloch. Symmetry-breaking bifurcations on cubic lattices. Nonlin-
earity, 10:1179–1216, 1997.

[CR71] M. G. Crandall and P. H. Rabinowitz. Bifurcation from simple eigenvalues. J. Functional
Analysis, 8:321–340, 1971.

[DCF+97] E. Doedel, A. R. Champneys, T. F. Fairgrieve, Y. A. Kuznetsov, B. Sandstede, and X. Wang.
AUTO: Continuation and bifurcation software for ordinary differential equations (with Hom-
Cont). http://indy.cs.concordia.ca/auto/, 1997.

[DDG21] K. Deckelnick, M. Doemeland, and H-C. Grunau. Boundary value problems for a special
Helfrich functional for surfaces of revolution: existence and asymptotic behaviour. Calc. Var.
Partial Differential Equations, 60:32, 2021.

[DE13] G. Dziuk and Ch. M. Elliott. Finite element methods for surface PDEs. Acta Numer., 22:289–
396, 2013.

[DEK+97] H.-G. Döbereiner, E. Evans, M. Kraus, U. Seifert, and M. Wortis. Mapping vesicle shapes into
phase diagrams: A comparison of experiment and theory. PRE, 55(4):4485–4474, 1997.

[Des04] M. Deserno. Notes on differential geometry, https://www.cmu.edu/biolphys/deserno/pdf/
diff_geom.pdf, 2004.

[DLW06] Qiang Du, Chun Liu, and Xiaoqiang Wang. Simulating the deformation of vesicle membranes
under elastic bending energy in three dimensions. J. Comput. Phys., 212(2):757–777, 2006.

[Doe17] M. Doemeland. Axialsymmetrische Minimierer des Helfrich-Funktionals, Master Thesis,
available at http://www-ian.math.uni-magdeburg.de/home/grunau/papers/Doemeland_

Master.pdf, 2017.

[DS13] H. Dankowicz and F. Schilder. Recipes for continuation, volume 11 of Comp. Sc. & Eng. SIAM,
Philadelphia, PA, 2013.

[dWDR+23] H. de Witt, T. Dohnal, J.D.M. Rademacher, H. Uecker, and D. Wetzel. pde2path - Quickstart
guide and reference card, 2023. Available at [Uec24].

[ES98] J. Escher and G. Simonett. The volume preserving mean curvature flow near spheres. Proc.
Amer. Math. Soc., 126(9):2789–2796, 1998.

71

www.icm.tu-bs.de/~bolle/ilupack/
http://facstaff.susqu.edu/brakke/evolver/examples/periodic/periodic.html
http://facstaff.susqu.edu/brakke/evolver/examples/periodic/periodic.html
http://indy.cs.concordia.ca/auto/
https://www.cmu.edu/biolphys/deserno/pdf/diff_geom.pdf
https://www.cmu.edu/biolphys/deserno/pdf/diff_geom.pdf
http://www-ian.math.uni-magdeburg.de/home/grunau/papers/Doemeland_Master.pdf
http://www-ian.math.uni-magdeburg.de/home/grunau/papers/Doemeland_Master.pdf


[ES13] C. M. Elliott and B. Stinner. Computation of two-phase biomembranes with phase dependent
material parameters using surface finite elements. Commun. Comput. Phys., 13(2):325–360,
2013.

[ES18] Norio Ejiri and Toshihiro Shoda. The Morse index of a triply periodic minimal surface. Dif-
ferential Geometry and its Applications, 58:177–201, 2018.

[FS21] S. A. Funken and A. Schmidt. A coarsening algorithm on adaptive red-green-blue refined
meshes. Numer. Algorithms, 87(3):1147–1176, 2021.

[FVKG22] B. Foster, N. Verschueren, E. Knobloch, and L. Gordillo. Pressure-driven wrinkling of soft
inner-lined tubes. New J. Phys., 24(January):Paper No. 013026, 15, 2022.

[FW14] S. Fujimori and M. Weber. A contruction method for triply periodic minimal surfaces. In
Proceedings of the 16th OCU, pages 79–90. OCAMI Studies, 2014.

[GBMK01] P. J. F. Gandy, S. Bardhan, A. L. Mackay, and J. Klinowski. Nodal surface approximations to
the P,G,D and I-WP triply periodic minimal surfaces. Chemical Physics Letters, 336:187–195,
2001.

[GK00] P. J. F. Gandy and J. Klinowski. Exact computation of the triply periodic Schwarz P minimal
surface. Chemical Physics Letters, 322:579–586, 2000.

[Gru12] H.-C. Grunau. The asymptotic shape of a boundary layer of symmetric Willmore surfaces of
revolution. In Inequalities and Applications ’10. Dedicated to the memory of Wolfgang Walter.
Selected papers of the 2nd conference on inequalities and applications, Hajdúszoboszló, Hungary,
September 19–25, 2010, pages 19–29. Basel: Birkhäuser, 2012.

[GS02] M. Golubitsky and I. Stewart. The symmetry perspective. Birkhäuser, Basel, 2002.

[Har13] D. Hartley. Motion by volume preserving mean curvature flow near cylinders. Comm. Anal.
Geom., 21(5):873–889, 2013.

[Hel73] W. Helfrich. Elastic properties of lipid bilayers: Theory and possible experiments. Zeitschrift
für Naturforschung, 28:693, 1973.

[Hof90] D. A. Hoffman. Some basic facts, old and new, about triply periodic embedded minimal surfaces.
J. Physique, 51:197–208, 1990. Intern. Workshop on Geometry and Interfaces (Aussois, 1990).

[Hoy06] R.B. Hoyle. Pattern formation. Cambridge University Press., 2006.

[Jac13] A. Jacobson. Algorithms and interfaces for real- time deformation of 2D and 3D shapes,
https://doi.org/10.3929/ethz-a-00979066, 2013.

[Jac24] A. Jacobson. gptoolbox, https://github.com/alecjacobson/gptoolbox, 2024.

[JQJZC98] Yan Jie, Liu Quanhui, Liu Jixing, and Ou-Yang Zhong-Can. Numerical observation of nonax-
isymmetric vesicles in fluid membranes. Phys. Rev. E, 58:4:4730–4736, 1998.

[Kie12] H. Kielhöfer. Bifurcation theory. Springer, New York, second edition, 2012. An introduction
with applications to partial differential equations.

[KIPM+20] V. Kralj-Iglc, G. Pocsfalvi, L. Mesarec, V. Šuštar, H. Hägerstrand, and A. Iglic. Minimizing
isotropic and deviatoric membrane energy–an unifying formation mechanism of different cellular
membrane nanovesicle types. PLOS ONE, 2020.

[KN06] Y. Kohsaka and T. Nagasawa. On the existence of solutions of the Helfrich flow and its center
manifold near spheres. Differential Integral Equations, 19(2):121–142, 2006.

[KPP15] M. Koiso, B. Palmer, and P. Piccione. Bifurcation and symmetry breaking of nodoids with
fixed boundary. Adv. Calc. Var., 8(4):337–370, 2015.

72

https://doi.org/10.3929/ethz-a-00979066
https://github.com/alecjacobson/gptoolbox


[KPP17] M. Koiso, B. Palmer, and P. Piccione. Stability and bifurcation for surfaces with constant mean
curvature. Journal of the Mathematical Society of Japan, 69(4):1519 – 1554, 2017.

[KPS18] M. Koiso, P. Piccione, and T. Shoda. On bifurcation and local rigidity of triply periodic minimal
surfaces in R3. Ann. Inst. Fourier (Grenoble), 68(6):2743–2778, 2018.

[Lip14] R. Lipowsky. Coupling of bending and stretching deformations in vesicle membranes. Advances
in colloid and interface science, 208:14–24, 2014.

[Lóp13] R. López. Constant Mean Curvature Surfaces with Boundary. Springer, 2013.

[LWM08] G. Lim, M. Wortis, and R. Mukhopadhyay. Red blood cell shapes and shape transformations:
Newtonian mechanics of a composite membrane. In Soft Matter: Lipid Bilayers and Red Blood
Cells, Volume 4, pages 83–254, 2008.

[Man11] C. Mantegazza. Lecture notes on mean curvature flow. Birkhäuser/Springer Basel, 2011.

[MDHV13] I. M Mladenov, P. A. Djondjorov, M. T. Hadzhilarova, and V. M. .Vassilev. Equilibrium
configurations of lipid bilayer membranes and carbon nanostructures. Comm. Theor. Phys.,
59(2):213–228, 2013.

[MDSB03] M. Meyer, M. Desbrun, P. Schröder, and A. H. Barr. Discrete differential-geometry operators
for triangulated 2-manifolds. In Visualization and mathematics III, Math. Vis., pages 35–57.
Springer, Berlin, 2003.

[Mla02] I. M. Mladenov. Delaunay surfaces revisited. C. R. Acad. Bulgare Sci., 55(5):19–24, 2002.

[MMCRH13] M. Mercker, A. Marciniak-Czochra, T. Richter, and D. Hartmann. Modeling and computing of
deformation dynamics of inhomogeneous biological surfaces. SIAM J. Appl. Math., 73(5):1768–
1792, 2013.

[MP02] R. Mazzeo and Fr. Pacard. Bifurcating nodoids. In Topology and geometry: commemorating
SISTAG, volume 314 of Contemp. Math., pages 169–186. AMS, Providence, RI, 2002.

[MU24] A. Meiners and H. Uecker. Supplementary information for Differential geometric bifurcation
problems in pde2path, www.staff.uni-oldenburg.de/hannes.uecker/pde2path/tuts, 2024.

[Nit76] J. C. C. Nitsche. Non-uniqueness for Plateau’s problem. A bifurcation process. Ann. Acad.
Sci. Fenn. Ser. A I Math., 2, 1976.

[Nit91] J. C. C. Nitsche. Periodic surfaces which are extremal for energy functionals containing curva-
ture functions. IMA Preprint Series #785, 1991.

[Nit93] J. C. C. Nitsche. Boundary value problems for variational integrals involving surface curvatures.
Quart. Appl. Math., 51(2):363–387, 1993.

[NT03] T. Nagasawa and I. Takagi. Bifurcating critical points of bending energy under constraints
related to the shape of red blood cells. Calc. Var. PDEs, 16(1):63–111, 2003.

[Oss14] R. Osserman. A Survey of Minimal Surfaces. Dover reprint of the 1968 edition, 2014.

[OYT14] Z. C. Ou-Yang and Z. C. Tu. Overview of the study of complex shapes of fluid membranes, the
Helfrich model and new applications. In Proceedings of the conference in honour of the 90th
birthday of Freeman Dyson, pages 277–287. World Sci. Publ., Hackensack, NJ, 2014.

[Pet83] Mark A. Peterson. An instability of the red blood cell shape. Journal of Applied Physics,
57:1739–1742, 1983.

[Pla73] J. Plateau. Experimental and theoretical statics of liquids subject to molecular forces only, trans-
lated by K. Brakke, facstaff.susqu.edu/brakke/plateaubook/plateaubook.html, 1873.

73

www.staff.uni-oldenburg.de/hannes.uecker/pde2path/tuts
facstaff.susqu.edu/brakke/plateaubook/plateaubook.html


[PP22] B. Palmer and Á. Pámpano. The Euler-Helfrich functional. Calc. Var. Partial Differential
Equations, 61(3):Paper No. 79, 28, 2022.

[PS04] P. Persson and G. Strang. A simple mesh generator in matlab. SIAM Review, 46(2):329–345,
2004.

[Ros92] M. Ross. Schwarz’ P and D surfaces are stable. Differential Geom. Appl., 2(2):179–195, 1992.

[Ros05] W. Rossman. The first bifurcation point for Delaunay nodoids. Experiment. Math., 14(3):331–
342, 2005.

[Ros08] A. Ros. Stability of minimal and constant mean curvature surfaces with free boundary. Matem-
atica Contemporanea, 35:221–240, 2008.

[RU19] J.D.M. Rademacher and H. Uecker. The OOPDE setting of pde2path – a tutorial via some
Allen-Cahn models, 2019. Available at [Uec24].

[Ruc81] H. Ruchert. A uniqueness result for Enneper’s minimal surface. Indiana Univ. Math. J.,
30(3):427–431, 1981.

[SAR97] L. Slobozhanin, J. Alexander, and A. Resnick. Bifurcation of the equilibrium states of a
weightless liquid bridge. Phys. Fluids, 9(7):1893–1905, 1997.

[SBL90] U. Seifert, K. Berndl, and R. Lipowsky. Shape transformations of vesicles: Phase diagram.
PRA, 44:1182–1202, 1990.

[Sch22] A. Schmidt. ameshcoars, https://github.com/aschmidtuulm/ameshcoars, 2022.

[Sei97] U. Seifert. Configurations of fluid membranes and vesicles. Advances in Physics, 46(1):13–137,
1997.

[Sei99] U. Seifert. Giant vesicles: A theoretical perspective. In P. L. Luisi and P. Walde, editors,
Perspectives in Supramolecular Chemistry: Giant Vesicle, volume 6, pages 71–91. Wiley, 1999.

[She02] J. R. Shewchuk. What is a good linear element? Interpolation, conditioning, and quality
measures. In Eleventh International Meshing Roundtable (Ithaca, New York), pages 115–126,
2002.

[SL95] U. Seifert and R. Lipowsky. Morphology of Vesicles. In R.Lipowsky and E. Sackmann, editors,
Handbook of Biological Physics, volume 1, pages 403–463. Elsevier, 1995.

[STFH06] G. E. Schröder-Turk, A. Fogden, and S. T. Hyde. Bicontinuous geometries and molecular
self-assembly: comparison of local curvature and global packing variations in genus-three cu-
bic, tetragonal and rhombohedral surfaces. Europ.Phys.J.B - Condensed Matter and Complex
Systems, 54(4):509–524, 2006.

[SZ89] S. Svetina and B. Zeks. Membrane bending energy and shape determination of phospholipid
vesicles and red blood cells. Eur.Biophys J,, 17(2):101–111, 1989.

[Tap16] K. Tapp. Differential geometry of curves and surfaces. Springer, [Cham], 2016.

[TN20] Naoki Tamemoto and Hiroshi Noguchi. Pattern formation in reaction–diffusion system on
membrane with mechanochemical feedback. Scientific reports, 10(19582), 2020.

[Uec21] H. Uecker. Numerical continuation and bifurcation in Nonlinear PDEs. SIAM, Philadelphia,
PA, 2021.

[Uec24] H. Uecker. www.staff.uni-oldenburg.de/hannes.uecker/pde2path, 2024.

[UY17] Masaaki Umehara and Kotaro Yamada. Differential geometry of curves and surfaces. World
Scientific, 2017. Translated from the second (2015) Japanese edition by W.Rossman.

74

https://github.com/aschmidtuulm/ameshcoars
www.staff.uni-oldenburg.de/hannes.uecker/pde2path


[VDM08] V. M. Vassilev, P. A. Djondjorov, and I. M. Mladenov. Cylindrical equilibrium shapes of fluid
membranes. J. Phys. A, 41(43):435201, 16, 2008.

[Vel20] R. Veltz. BifurcationKit.jl, https://hal.archives-ouvertes.fr/hal-02902346, 2020.

[War08] M. Wardetzky. Convergence of the cotangent formula: an overview. In Discrete differential
geometry, volume 38 of Oberwolfach Semin., pages 275–286. Birkhäuser, Basel, 2008.

[WBD97] A. De Wit, P. Borckmans, and G. Dewel. Twist grain boundaries in 3D lamellar Turing
structures. Proc. Nat. Acad. Sci., 94:12765–12768, 1997.

[WDS96] W. Wintz, H.-G. Döbereiner, and U. Seifert. Starfish vesicles. EPL, 33(5):403–408, 1996.

[Xu04] Guoliang Xu. Convergent discrete Laplace–Beltrami operators over triangular surfaces. Com-
puter Aided Geometric Design, 21:767–784, 2004.

[XX09] Zhiqiang Xu and Guoliang Xu. Discrete schemes for Gaussian curvature and their convergence.
Comput. Math. Appl., 57(7):1187–1195, 2009.

75

https://hal.archives-ouvertes.fr/hal-02902346

	Introduction
	Geometric background, and data structures
	Differential geometry
	Default data and initialization of a pde2path struct p
	pde2path setup for discrete differential geometry
	Discrete differential geometry FEM operators
	The pde2path library Xcont


	Second order example implementations and results
	Spherical caps
	Some minimal surfaces
	Prescribing one component of X at the boundary
	A Plateau problem
	Bifurcation from the Enneper surface

	Liquid bridges and nodoids
	Nodoid theory
	Nodoid continuation with fixed boundaries
	Short nodoids
	Long nodoids

	Nodoids with pBCs in z
	Triply periodic surfaces
	The Schwarz P minimal surface (family)
	CMC companions of Schwarz P


	Fourth order biomembranes
	Closed Vesicles of spherical topology
	Our setup
	Results
	Intermezzo: Numerical Helfrich flow

	Biocaps

	Summary and outlook
	Spheres, hemispheres, VPMCF, and an alternative setup
	Spheres
	Hemispheres
	Spherical caps via 2D finite elements 

	Biocylinders with clamped BCs
	Continuation in the spontaneous curvature
	Intermezzo: Other radii
	Continuation in surface tension


