
. DRAFT

pde2path with higher order finite elements

Hannes Uecker

Institut für Mathematik, Universität Oldenburg, D26111 Oldenburg, hannes.uecker@uni-oldenburg.de

September 2, 2021

Abstract

We describe by means of some examples how to link the Matlab continuation and bifurcation
package pde2path with functions based on the FSElib from [Poz14] implementing a quadratic
finite element method (FEM), in 2D and 3D. This quadratic FEM shows some advantages com-
pared to the default piecewise linear FEM of pde2path, in particular with respect to keeping
symmetry of solutions. Additionally, in 1D we provide a spectral FEM via Lobatto points on
each element.

Contents

1 Introduction 1

2 The basic setup, and ac2D 4

3 Swift–Hohenberg 7
3.1 2D . 7
3.2 3D . 9

4 Problems on curved surfaces 11

A 1D 12

1 Introduction

In its standard setup, the Matlab package pde2path [UWR14, Uec19a, Uec21a, Uec21c] uses the piece-
wise linear (Lagrangian P1) finite element method (FEM) for numerical continuation and bifurcation
analysis of systems of PDEs of the form

Md∂tu = −G(u, λ), G(u, λ) = −∇ · (c⊗∇u) + au− b⊗∇u− f, (1)

over bounded domains Ω ⊂ Rd, d = 1, d = 2, or d = 3, (1D, 2D, 3D case), with various boundary
conditions (BCs). In (1), u = u(x, t) ∈ RN , t ≥ 0, x ∈ Ω, λ ∈ Rp is a parameter (vector), Md ∈ RN×N

is a (dynamical) mass matrix, which may be singular, and c, a, b and f may depend on x, λ and u.
For (1), pde2path can generate, by a few convenience calls, FEM discretizations based on OOPDE

[Prü21], and then assemble the FEM (differentiation) matrices. With these, the user can set up the
(discretized) right hand side (rhs) G(u, λ), and then compute branches of steady and time periodic
solutions. For details, and many demos of numerical continuation of branches of solutions of PDEs,
see [Uec21a] and the various tutorials which together with the software and demos can be downloaded
at [Uec21c].

. DRAFT
May 8, 2023 5:52 PM 1

. DRAFT

Here we explain how to link pde2path with higher order FE methods based on the FSElib from
[Poz14]. A basic selection of functions from the FSElib is included in the download of pde2path,
together with slight modifications to and some interfaces of them, but we strongly recommend [Poz14]
and http://dehesa.freeshell.org/FSELIB/ for further information. As examples we choose three
typical model problems, in 1D, 2D and 3D, namely: As a warm up, Allen–Cahn type of equations

∂tu = c∆u+ f(u), u = u(x, t) ∈ R; (2)

as a fourth order problem, the Swift–Hohenberg equation

∂tu = −(1 + ∆u)2 + λu+ νu2 − u3, u ∈ R; (3)

some problems over curved surfaces, for instance the (generalized) Schnakenberg problem

∂tU = D∆TR,ρU+F (U), F (U) =

(
−u+u2v

λ−u2v

)
+ σ

(
u−1

v

)2(
1

−1

)
, (4)

on a torus, where U =

(
u

v

)
and D =

(
1 0

0 d

)
, and where ∆TR,ρ is the Laplace–Beltrami operator

(LBO) on the torus. We mainly focus on 2D and 3D, and explain the 1D setting with elements of
variable polynomial order up to 5 in Appendix A.

In 2D, the FSElib provides 6–nodes (xj, yj), j = 1, . . . , 6, triangle elements (by adding the edge
midpoints of a standard triangulation to the discretization) and piecewise quadratic element and test
functions, [Poz14, §5.1]. The six element functions ψi(x, y), i = 1, . . . , 6 then fulfill as usual

ψi(xj, yj) = δij =

{
1 i = j,

0 else,
and

6∑
i=1

ψi ≡ 1, (5)

and a function u : Ω→ R is expanded as

u(x, y) =

np∑
i=1

uiψi(x, y) (6)

where np is the total number of points in the mesh, the ψi are an enumeration of the global basis
functions, and the ui are the nodal values. In 3D, we have 10–nodes tetrahedra by adding the edge
midpoints of a standard triangulation by 4–node tetrahedra to the discretization. The ten quadratic
element functions again fulfill

ψi(xj, yj, zj) = δij and
10∑
i=1

ψi ≡ 1, (7)

and a function u is expanded as in (6).
For the triangulation, the nt 6–node triangles in the qFEM thus yield a 3–node triangulation by

4nt 3–node triangles. Similarly, nt 10–node tetrahedra correspond to 8nt 4–node tetrahedra. As one of
the major steps in any FEM is the generation of suitable meshes, we first use the convenience functions
for the standard mesh generation in pde2path, although the FSElib also includes some functions for
mesh–generation on standard domains. Focusing for now on the 2D case, we can subsequently convert
a 3–node triangulation to a 6–node triangulation, which we use to assemble the associated mass and
stiffness matricesM6, K6. The 6–node triangulation also yields a refined 3–node triangulation which we

. DRAFT
May 8, 2023 5:52 PM 2

http://dehesa.freeshell.org/FSELIB/

. DRAFT

use for plotting, and to generate FEM matrices for which we do not yet have 6–node implementations,
for instance matrices to encode boundary conditions (BCs). In 2D, we mainly use the functions

p=tri2six(p) and [K,M]=assem6g(p,c,a), (8)

where p is a standard pde2path problem struct, containing the mesh points in p.pdeo.grid.p, and
data for the hofem functions in hofem. This is the 6–node triangulation hofem.tri, which is generated
by p=tri2six(p), and some switches, see Table 1. In (8), c and a contain the diffusion tensor c and the
matrix a from (1), see Remark 4.1 for details, and there is the simplified version [K,M]=assem(p) with
c, a = 1. By (8) we assemble the 6–node stiffness matrix K for the diffusion operator (“Laplacian”)
−∇ · (c∇u) associated to c, with homogeneous Neumann BCs, and the 6–node mass matrix M
associated to a. Otherwise we completely rely on the original pde2path setup for all other assembly
and mesh handling. The analogs of this also apply in 3D. For (2) and (3) with (homogeneous) Neumann
BCs (NBCs), we thus have a genuine quadratic FEM, but, e.g., for other BCs or for convection matrices
to encode phase conditions we have a ’hybrid’ FEM. See below for further comments. Table 2 lists the
main functions from hofem/hofem for using the FSElib; a basic selection of functions from the FSElib is
in hofem/FSElib, but we strongly recommend [Poz14] and http://dehesa.freeshell.org/FSELIB/

for further information.

Table 1: Data in p.hofem, where p is a standard pde2path problem struct; at bottom: 1D data.

field remarks

tri nt×6 field of 6–node triangle point indices; nt×10 for 10–node tetrahedra
Kfn filename for saving K,M (as assembly may become slow for larger scale problems)
sw, isw convenience flag to signal the use of hofem, and switch to choose the interpolation method

for assembly
t2sinterpolsw convenience flag for tri2six and four2ten to interpolate the current solution and tan-

gent to the new mesh (if 1) or not (otherwise).

ne,xe # of elements, and their endpoints xe(1:ne+1); the meshpoints are still in p.pdeo.grid.p
femorder (uniform) order, i.e., femorder+1 meshpoints/ansatz functions in each element
npoly vector of orders for elements; can be set individually, but for mesh–adaption uniform

order is assumed
tri ne×(femorder+1) vector of element nodes

As usual in pde2path, the rhs (and Jacobians) for semilinear problems such as (2)–(4) will be
encoded in functions sG (and sGjac). Thus, the main changes compared to the standard treatment
of (2) and (3) on various domains and with various BCs via the linear FEM is that at init we need to
set up a 6-node (2D) resp. 10-node (3D) triangulation of the spatial domain, and then compute the
(6-node or 10–node) stiffness/mass matrices used in sG and sGjac, and similar in 1D.

As indicated, the demos consider problems treated before. For ac1D (Appendix A) and ac2D,
there is not much benefit from using the qFEM, and they merely serve as toy problems to illustrate
the new setup. For the larger scale problems sh2D and sh3D, an important advantage of the qFEM
is that it more robustly keeps symmetries of solution branches, i.e., the continuation is less prone to
“branch jumping”, by which we mean the undesired switching to another branch, often associated
with a loss of symmetry, see [Uec21a, §3.6.2]. This also holds for schnaktor and the other demos
dealing with problems on surfaces. The main purpose of schnaktor thus is to give another example
how to seamlessly link hofemlib with the standard linear FEM setup. The main shortcomings of
our qFEM currently are: For BCs other than homogeneous NBCs, which hence require book keeping
of boundary segments, we are presently restricted to somewhat simple domains, where boundary
identification numbers (boundary IDs) can be set in an easy way. Moreover, a major strength of the

. DRAFT
May 8, 2023 5:52 PM 3

http://dehesa.freeshell.org/FSELIB/

. DRAFT

Table 2: Main functions from libs/hofem, where p is a standard pde2path problem struct.

function remarks

p=tri2six(p) convert the 3-node triangulation from p.pdeo.grid into a 6-node triangula-
tion by adding the edges midpoints, storing the 6–node connectivity in p.tri.
If p.hofem.t2sinterpolsw=1, then the current solution u and tangent τ are
interpolated to the new mesh.

[K,M]=assem6g(p,c,a) assemble the 6–node triangles Neumann Laplacian stiffness matrix K, and the
mass matrix M. Different options to pass the diffusion tensor c (scalar, or 2×2,
possibly x–dependent), and a (scalar, possibly x-dependent).

[K,M]=assem6(p) simplified (and slightly faster) version of assem6g with c = a = 1.
p=four2ten(p) analog of tri2six in 3D
[K,M]=assem10g(p,c,a) analog of assem6g in 3D. assem10 as simplified version.

p=two2lob(p) 1D; generate inner (lobatto) nodes for each element, with endpoints
p.hofem.xe(1:ne), and the associated connectivity matrix p.hofem.tri; store
the points in p.pdeo.grid.p.

[K,M]=assem1Dlob(p) assemble K,M for Lobatto-FEM, data in p.hofem.
[K,M,Kx]=assem1Dq(p) assemble K,M, and Kx corresponding to ∂x for quadratic-FEM, data in

p.hofem.
p=simplecoarselob(p) for 1D mesh–adaptation.

FEM is adaptive mesh refinement. This is easy and flexible in 1D (see §A), but is not yet implemented
in the (in our) qFEM in 2D and 3D. However, as a workaround we can do mesh adaptation in the
linear FEM, and then switch back to the qFEM.

Remark 1.1 Naturally, we may as well aim to link pde2path with other FEM packages. The so
called PTE (points-triangulation-edges) data structures for these follow some standards, with minor
variations. However, the overheads to assemble mass and stiffness matrices differ significantly from
package to package, and in particular when aiming at higher order FEM and easy Matlab interfaces,
the choices of packages do not seem great. See also [FALD12].

If the nodes in each element (e.g., interval, triangle or tetrahedron) are chosen to minimize the

interpolation error in each element, e.g., Chebychev or Lobatto points, then such higher order elements

are also called spectral elements. See, e.g., [Lui11, Chapter 3] and [Poz14] for very readable and useful

introductions. Here we restrict to the functions from the FSElib [Poz14], with minor extensions, and

regard this as a first step towards higher order FEM in pde2path. c

2 The basic setup, and ac2D

In ac2D we consider the (cubic–quintic) AC equation

G(u) := −c∆u− λu− u3 + u5
!

= 0 (9)

over Ω = (−2π, 2π)× (−π, π), with the Dirichlet BCs (DBCs)

u = d cos(y/2) on {x = 2π}, parameter d, (10)

and u = 0 on the remaining boundary. For d = 0 we have the bifurcation points

λjl = (j/4)2 + (l/2)2, φjl = sin

(
j

4
(x+ 2π)

)
sin

(
l

2
(y + π)

)
, j, l = 1, 2, . . . (11)

. DRAFT
May 8, 2023 5:52 PM 4

. DRAFT

Table 3: Subdirectories of hofem; the last two demos are not discussed in detail here.

directory remarks

FSElib Selected functions from [Poz14], see also http://dehesa.freeshell.org/FSELIB/

hofemlib main library, minor modifications of functions/code snippets from [Poz14]

ac1D, ac1Dq (2) over a 1D interval with Dirichlet BCs, similar to demos/acsuite/ac1D; see Appendix A.
ac2D (2) over a 2D box with Dirichlet BCs, similar to demos/acsuite/ac2D, see also [Uec21a, §3.1]
sh2D (3) on a (rather large) 2D rectangle with NBCs, focusing on the computation of a primary

hexagon branch and a snaking branch of fronts between hexagons and u = 0. This is similar
to [Uec21a, §8.2.3], where analogous problems have been treated with the linear FEM, see also
demos/pftut/sh. Moreover, the same problem has been considered in [Uec21b, §5.2.2] using
FFT methods. We comment on comparison of the different discretization methods below.

sh3D (3) in 3D with NBCs over a long and slender bar, similar to [Uec21a, §8.3.2], again see also
demos/pftut/sh.

schnaktor (4), using assem6g to build the LBO in 6–node triangles, with periodic BCs and hence some
phase–condition matrices. Similar to [Uec21a, §10.2.2].

acS (2) on a sphere as another canonical example, similar to [Uec21a, §10.1]
schnakcone (4) on a cone, hence with a non–diagonal LBO, similar to [Uec21a, §10.2.3].

from the trivial branch u ≡ 0, which we can use to assess accuracy. The same problem is studied
in the demo demos/acsuite/ac2D via linear FEM, see also [RU19] and [Uec21a, §6.3], where it also
serves as a model problem for mesh adaptation, and to which we refer for details.

Here we want to explain the usage of the qFEM (6–node triangles), and give just one brief com-
parison of accuracy based on (11). Listing 1 shows the first 8 lines of acinit.m. In l4 we generate a
(3–node triangle) mesh for the domain as usual, and the essential new command is tri2six in line
5. This adds the midpoints of the given triangle edges to the point-list, stores the associated 6–node
triangles in p.hofem.tri, and the new (3–node triangles) mesh in p.pdeo.grid. Subsequently we
also set the boundary IDs via setidssq, which assigns 1=bottom, 2=right, 3=top, 4=left.

function p=acinit(p,lx,ly,nx,par ,hofem) % ac2D

p=stanparam(p); screenlayout(p); p.nc.neq=1; p.sw.sfem=-1; p.hofem=hofem;

p.fuha.sG=@sG; p.fuha.sGjac=@sGjac; p.fuha.e2rs=@e2rs; p.nc.sf=1e3;

pde=stanpdeo2D(lx ,ly ,2*lx/nx); % 2D rectangle pde object , h as argument

p.pdeo=pde; p=tri2six(p); % convert 3-node triang.to 6-node -triang:

% add edge -midpoints , store 6-node -elems in p.hofem.tri , mesh in p.pdeo.grid

p.pdeo.grid=setidssq(p.pdeo.grid); % set ids for boundary segments

%for i=1:4; identifyBoundarySegment(p.pdeo.grid ,i); pause; end

Listing 1: Start of ac2D/acinit.m. Remainder as usual.

In oosetfemops in Listing 2 we use p.hofem.sw to assemble either the 6-node or the 3-node K and
M , while the boundary matrices Q and GBC are always assembled by the standard 3–node functions.
The rhs sG and the Jacobian sGjac then take the same form as usual.

function p=oosetfemops(p) % for ac2D , in linear (P1) or quadatic (P2) FEM

gr=p.pdeo.grid; fem=p.pdeo.fem; % just shorthands

if p.hofem.sw; [K,M]= assem6(p); % use 6-node triangulation , simple version c=a=1

else [K,M,~]= fem.assema(gr ,1,1,1); end % or default 3-node

p.mat.K=K; p.mat.M=M; % store K and M

bc1=gr.robinBC (1,0); bc2=gr.robinBC(1,’cos(y/2)’); % BC matrices based on 3-node

gr.makeBoundaryMatrix(bc1 ,bc2 ,bc1 ,bc1); % bottom , right , top , left

[p.mat.Q,p.mat.G,~ ,~]=p.pdeo.fem.assemb(gr); % the BC matrices

function r=sG(p,u) % ac2D ,

f=nodalf(p,u); % the nonlinearity

par=u(p.nu+1:end); u=u(1:p.nu); % split u into parameters and PDE -part

r=par(1)*p.mat.K*u-p.mat.M*f... % the bulk part

. DRAFT
May 8, 2023 5:52 PM 5

http://dehesa.freeshell.org/FSELIB/

. DRAFT

+p.nc.sf*(p.mat.Q*u-par(4)*p.mat.G); % the boundary terms via stiff -spring

Listing 2: ac2D/oosetfemops.m and sG. In oosetfemops we use the switch p.hofem.sw to either use the
6–node triangulation p.tri or the default 3–node triangulation to assemble K and M , with point coordinates
for both in p.pdeo.grid.p.

With these preparations, the script ac2D/cmds1.m works almost identical to the one in acsuite/ac2D.
One important difference is that we run the initialization

lx=2*pi; ly=pi; nx=20; sw6=0; p=acinit(p,lx,ly,nx,par,sw6)

with a rather small nx, since the generation of the 6–node triangulation (whether used or not, according
to the switch p.hofem.sw) at least doubles the number of mesh points. In detail, we always generate
the finer mesh via tri2six, and p.hofem.sw only decides whether the associated 6-node mesh or the
standard 3–node triangulation from p.pdeo.grid.t are used for assembly in oosetfemops.

(a) (b) (c)

0.2 0.4 0.6 0.8
0

2

4

6

||
u
||

2

10

(d) (e)

Figure 1: (2) over Ω = (−2π, 2π)× (−π, π) with the BCs (10). (a) sparsity structure of K for a triangulation

with np = points and nt = 6-node triangles. (b) K for the corresponding 3–node triangles. (c) basic BD for

d = 0. (d,e) sample solutions, including mesh adaptation.

Figure 1 shows some basic results from cmds1. In (a),(b) we compare the sparsity structures
of the stiffness matrices K6 (6-node triangles) and K3 (same mesh points, but linear FEM, i.e., 3–
node triangles). As expected K3 is roughly twice as sparse as K6, and the same sparsity structures
hold for M6 and M3. To assess the 6–node vs 3–node accuracy, at the start of cmds1 we compute
e23 :=

∑3
i=1(λi − λi,3)2 and e26 :=

∑3
i=1(λi − λi,6)2, where (λ1, λ2, λ3) = (5/16, 1/2, 13/16) are the first

three analytical BPs, and λi,3 and λi,6 are their numerical approximations based on 3–node triangles
and 6–node triangles, respectively. This yields e3 ≈ 0.008 and e6 = 0.004, indicating the higher
accuracy of 6–node triangles, on the same mesh, which balances the slightly higher costs due to the
denser matrices.

In (c) we show a basic BD of the first 3 nontrivial branches, on a rather coarse mesh of np = 861
points (400 6–node triangles), and a sample solution in (d), while (e) shows a sample solution from
a continuation in the boundary amplitude d, and an example of mesh adaptation from np = 861
to np = 1886. This works by setting p.hofem.sw=0 and hence using only the 3–node assembly.

. DRAFT
May 8, 2023 5:52 PM 6

. DRAFT

Subsequently, we can again use tri2six to extend the refined 3–node mesh to a 6–node mesh (with
np = 7406 mesh points), and switch back to using the 6–node triangulation by setting p.hofem.sw=1

and calling oosetfemops (see source of cmds1.m). A drawback of this workaround for adaptive mesh
refinement in the 6–node setting is that it quickly leads to excessively many mesh points. However,
this is also due to here using the standard FEM error–estimator and refinement without coarsening;
see §3 for the alternative trullekrul mesh adaptation.

3 Swift–Hohenberg

The fourth order (quadratic-cubic) SH equation (3), i.e.,

∂tu = −(1 + ∆u)2 + λu+ νu2 − u3, u ∈ R, (12)

is a canonical model for pattern formation, see, e.g., [SU17] or [Uec21a, Chapter 8] and the references
therein. We consider (12) over 2D and 3D boxes (rectangles and cuboids, respectively), with NBCs
for u and ∆u. The trivial solution branch u ≡ 0 is stable for λ < 0, and depending on the domain
Ω (in particular its aspect ratio(s)), near λ = 0 becomes unstable to patterns with wave length near
2π, i.e., with wave vectors k = (k1, k2) or k = (k1, k2, k3) with |k|2 = k21 + . . . + k2d ≈ 1. Letting
(u1, u2) = (u,∆u) we obtain the 2nd order system(

1 0

0 0

)
∂t

(
u1
u2

)
=

(
−∆u2 − 2u2 − (1− λ)u1 + f(u1)

−∆u1 + u2

)
, (13)

which immediately translates into the FEM formulation

Mu̇ = −(Ku− F (u)), (14)

M =

(
M 0

0 0

)
, K =

(
0 −K
K M

)
, F (u) =

(
M((λ−1)u1−2u2+f(u1))

0

)
,

where K and M correspond to the scalar stiffness and mass matrices. See, e.g., [Uec21a, Remark
8.1] for the equivalence of (13) and (12) for domains with a smooth boundary, or convex polygonal
domains.

3.1 2D

In 2D we choose Ω a rectangle with side lengths lx = 12π and ly = lx/
√

3, which corresponds to
the three critical wave vectors k1 = (1, 0), k2,3 = (−1/2,±

√
3/2), forming a hexagonal dual lattice.

Correspondingly, the primary bifurcations at λ = 0 are to

stripes u = ±2
√
λ/3 cos(x) +O(λ3/2) and

hexagons u = A
[
cos(x)+ cos((x+

√
3y)/2)+ cos((x−

√
3y)/2

]
+O(λ2)),

with A = −γλ+O(λ2), γ = 2ν+O(|λν|). The stripes always bifurcate in pitchforks, and the hexagons
bifurcate transcritically for ν 6= 0. The subcritical solutions (with A > 0) are called up hexagons (or
spots), the supercritical solutions are called down hexagons (or gaps). The up hexagons stabilize in
a fold at λ = −ν2

18
+ h.o.t, see [Uec21a, §8.1], and due to this we may expect snaking branches of

localized up hexagons (or fronts between hexagons and u = 0). However, in particular over large
domains these localized hexagon branches are not easy to continue numerically in the piecewise linear

. DRAFT
May 8, 2023 5:52 PM 7

. DRAFT

FEM discretization, because they (and other branches) are prone to “branch jumping” due to the large
multiplicity of patterns. Hence, continuing these branches can be thought as a benchmark problem.

For the linear FEM in [Uec21a, §8.2.3] we need to carefully choose sufficiently fine and symmetric
meshes, and, moreover, need to use the modification pmcont to mitigate the branch jumping. In
[Uec21b] we studied the problem using spectral discretizations by FFT, finding that this yields quite
robust continuations with moderately fine discretizations (np around 5000), but the drawback is that
the FFT discretization yields full Jacobians, and adaptive mesh refinement is not possible. Here we
find that 6–node triangulations also allow more robust continuations (no branch jumping) with again
rather coarse discretizations.

(a) (b)

-0.6 -0.4 -0.2
0

0.2

0.4

0.6

||
u

||
2

40

40

Figure 2: (12) on Ω = (−lx, lx)× (−ly, ly), lx = 6π, ly = lx/
√

3, ν = 2, 6-node triangulation with np = 5275.

(a) BD of hexagons (blue) and hexagon fronts (red). (b) sample solutions.

In Fig. 2 we show the basic BD of the up hexagons and the hex–to–zero front, on a 6–node
triangle mesh with np = 5275. In Fig. 3 we illustrate mesh adaptation using trullekrul [Uec19b]
on hf/pt40, cf. also [Uec21a, §8.2.3]. The trullekrul mesh adaptation, based on 3–node triangles,
includes genuine coarsening, which on hf/pt40 naturally yields coarse meshes for negative x where
u is almost identically zero; see (b) for a sample, where the degree of coarsening strongly depends
on the used trullekrul parameters. Thus, trullekrul gives more options to control the meshing,
although, as indicated in (c), switching back to 6–node triangles by the naive method of subdivision
at the edge midpoints naturally increases np again.

As we do not save p.mat to disk1 and as assem6 (and more so assem10 for 3D) due to a lack
of vectorization becomes somewhat slow for np > 5000, say, in oosetfemops we apply a little trick
to avoid reassembling of K,M when reloading points for, e.g., branch–switching: we first try to
load K,M from the file p.hofem.Kfn; only if this fails, then K,M are assembled, and saved to file
p.hofem.Kfn. See Listing 3.

p=[]; dsw=1; nref =2; lx=6*pi; nx=35; ly=lx/sqrt (3); ny=round(ly/lx*nx);

Kfn=’K1.mat’;try delete(Kfn); end; hofem.Kfn=Kfn; hofem.sw=1; % hofem data

lam = -0.01; nu=2; par=[lam nu]; p=shinit(p,lx ,ly ,nx ,ny ,dsw ,par ,nref ,hofem);

function p=oosetfemops(p) % for SH as 2nd order system , hence singular p.mat.M

if p.hofem.sw; % 6-node , simple syntax (c=a=1) [K,M]= assem6(p);

1to save disk space; in fact, the K and M for np = 10000 already require about 1MB, and this can quickly increase
to 10 or 20 MB for finer meshes

. DRAFT
May 8, 2023 5:52 PM 8

. DRAFT

(a)

(b)

(c)

Figure 3: Solution plots for mesh adaptation for hf/pt40 from Fig. 2. (a) original mesh, n5 = 5275. (b)

after trullekrul refinement/coarsening, np = 1644. (c) returning to 6-node triangles, np = 6494.

try K=load(p.hofem.Kfn ,’KM’); K=K.KM.K; M=K.KM.M; % try loading K,M from disk

% if that fails , assemble K,M and save

catch;tic; [K,M]= assem6(p); toc , KM.K=K; KM.M=M; save(p.hofem.Kfn ,’KM’); end

else [K,M,~]=p.pdeo.fem.assema(p.pdeo.grid ,1,1,1); % standard 3-node

end

p.mat.M=[[M 0*M];[0*M 0*M]]; % system mass matrix (here singular)

p.mat.Ks=K; p.mat.Ms=M; % save SCALAR Laplacian , system K composed in sG

Listing 3: sh2D6/cmds.m (lines 3-5) and oosetfemops.m, where we first try to load K and M from file
p.hofem.Kfn, and only if this fails compute (and save) K and M .

3.2 3D

The basic ideas for discretization of a 3D domain Ω by 10–node tetrahedra [Poz14, §8.7] are similar
to those for 6–node triangles in 2D. We start with a standard pde2path discretization of Ω by 4–
node tetrahedra, for instance as generated by pdeo=stanpdeo3D(lx,ly,lz,h), containing the point–
coordinates in pdeo.grid.p ∈ R3×np and the point–indices of the tetrahedra in pdeo.grid.t ∈ R5×nt ,
where the 5th row is a subdomain identifier. Then, using p=four2ten(p) we generate a 10–node
discretization by adding the 6 edge midpoints for each tetrahedron, again modifying p.pdeo.grid

accordingly, and storing the 10-node tetrahedra list in p.hofem.tri. The files in sh3D10 thus are
completely analogous to those in sh2D6, and we only briefly discuss the results obtained in cmds1

(small domain) and cmds2 (long domain).

. DRAFT
May 8, 2023 5:52 PM 9

. DRAFT

(a) (b) (c) (d)

-0.2 0 0.2
0

0.2

0.4

0.6

||
u

||
2

40

Figure 4: Results from sh3D10/cmds1.m. (a) BD of BCCs on Ω = (−lx, lx)3, lx = π/
√

2, np = 343. (b)

sample solution. (c,d) sample solution after coarsening to np = 205, and after four2ten with np = 1403.

Again the mesh after coarsening strongly depends on the chosen trullekrul parameters; see cmds1.m.

In Fig. 4(a) we start with a BD of the primary body centered cubic (BCC) balls branch bifurcating
from λ = 0, on a minimal domain Ω = (−lx, lx)3, lx = π/

√
2, and a coarse mesh with np = 343, with a

sample solution in (b). In (c) we illustrate results of mesh coarsening on the 4–node tetrahedra level
via trullekrul (c), and subsequent return to 10–node tetrahedra in (d).

(a) (b)

-0.3 -0.2 -0.1 0
0

0.1

0.2

0.3

0.4

||
u

||
2

40

140

Figure 5: Results from sh3D10/cmds2.m. (a) BD of hot balls (blue) and a balls–to–zero fronts (red) for

Ω = (−lx, lx) × (−ly, ly) × (−lz, lz), lx = ly = π/
√

2 and lz = 8lx, 10–node tetrahedra with np = 11495. (b)

sample solutions.

In Fig. 5 we consider a 3D analog of Fig. 2, namely the BCC balls on a slender bar Ω = (−lx, lx)×
(−ly, ly)× (−lz, lz) with lx = ly = π/

√
2 and lz = 8lx. This is discretized by np = 11495 mesh points,

which yields nz=293475 non–zero entries in K10. Like the up hexagons in Fig. 2, the balls bifurcate
transcritically, and the subcritical blue part stabilizes in a fold. Additionally there are BPs on the blue
branch to localized balls, and branch switching at the first BP yields the snaking red branch of steady
fronts between balls and u ≡ 0. At the end of cmds2.m we illustrate trullekrul-mesh adaptation on
bf/pt40, which works just like in Fig. 4.

. DRAFT
May 8, 2023 5:52 PM 10

. DRAFT

4 Problems on curved surfaces

To illustrate how to work with more general diffusion operators, and phase conditions, in schnaktor

we consider the reaction diffusion system (4), i.e.,

∂tU = D∆TR,ρU+F (U), F (U) =

(
−u+u2v

λ−u2v

)
+ σ

(
u−1

v

)2(
1

−1

)
, (15)

on the (surface of the) torus with major radius R > 0 and minor radius 0 < ρ < R, parameterized byx̃ỹ
z̃

 =

(R + ρ cos y) cosx

(R + ρ cos y) sinx

ρ sin y

 ∈ R3, (x, y) ∈ Ω = [−π, π)2. (16)

The associated Laplace–Beltrami operator (LBO) is denoted by ∆TR,ρ and given by

∆TR,ρu(x, y) =
1

ρ2(R + ρ cos y)
∂y((R− ρ cos y)∂yu) +

1

(R + ρ cos y)2
∂2xu, (17)

with periodic BCs in x (think azimuth φ) and y (think elevation θ). The problem has been considered
in [Uec21a, §10.2.2] in the linear FEM, and our main task is to set up (17) using assem6g, and
the x derivative matrix Dphi needed for a phase condition to deal with the translational invariance
in x. Listing 8 shows the pertinent functions. In schnaktorinit, the main difference to shinit

from before is the switching–on of the periodic BCs in line 14; this works as usual [Uec21a, §4.3] via
p=box2per(p,psw), where (here) psw=[1 2] means pBCs in x and y. In oosetfemops, similar to the
BC matrix Q in ac2D, Dphi is assembled using the 3–node triangulation, and LBtor6 works exactly
like the 3–node version LBtor, except that assem6g is used instead of assema. Finally, the script
cmds1.m works exactly like the 3–node version from [Uec21a, §10.2.2] and demos/pftut/schnaktor.
The results as shown in Fig. 6 are also the same, but again the 6–node triangles are more robust wrt
keeping symmetry, although this only becomes an issues on larger tori or at (significantly) lower λ.

function p=oosetfemops(p) % Schnakenberg on torus ,

gr=p.pdeo.grid; fem=p.pdeo.fem; par=p.u(p.nu+1: end); u=p.u(1:p.nu);

R=par(4); rho=par(5);

if p.hofem.sw % quadratic FEM

try KM=load(p.hofem.Kfn ,’KM’); K=KM.KM.K; M=KM.KM.M; % try get K,M from disk

catch; [K,M]= LBtor6(p,R,rho); KM.K=K; KM.M=M; save(p.hofem.Kfn ,’KM’); % assem

end

else [K,M]= LBtor(p,R,rho); end % linear FEM

% assemble phi -different. matrix for phi -phase -cond , and transform to pBC

Dphi=convection(fem ,gr ,[1;0]); Dphi=[Dphi 0*Dphi; 0*Dphi Dphi];

p.mat.K=K; p.mat.M=[M 0*M; 0*M M]; p.mat.Dphi=filltrafo(p,Dphi);

[Dx,Dy]=fem.gradientMatrices(gr); E=center2PointMatrix(gr); Dx=E*Dx;

Dx=filltrafo(p,Dx); p.mat.Dx=[Dx 0*Dx; 0*Dx Dx];

function [K,M]= LBtor6(p,R,rho)

% LBtor6: Laplace -Beltrami -Op for torus based on 6-node triangles

% hence assem6g instead assema , otherwise completely as LBtor.

po=getpte(p); th=po(2,:) ’; n=p.np; [Kphi ,M]= assem6g(p,[1 0; 0 0],1);

[Kth ,~]= assem6g(p,[0*th’ 0*th ’; 0*th’ R+rho*cos(th) ’],1);

M=filltrafo(p,M); dd=1./(R+rho*cos(th)); % build LBO and tranform to pBC:

K=filltrafo(p,spdiags(dd/rho^2,0,n,n)*Kth+spdiags(dd.^2,0,n,n)*Kphi);

Listing 4: oosetfemops and LBtor6.

. DRAFT
May 8, 2023 5:52 PM 11

. DRAFT

(a) (b)

2.8 3 3.2

3.5

4

4.5

5

m
a

x
 u

1

10

10

20

5

Figure 6: (15) on a torus with (R, ρ) = (12, 4), σ = −0.1, np=4705 mesh points. Branches c1 (magenta) c3

(red, with stable patterns), c3-2 (brown, secondary from 2nd BP of c3), and c4 (blue), with sample plots.

Remark 4.1 a) The syntax for c,a in [K,M]=assem6g(p,va) is as in fem.assema(grid,c,a,f), see
[Uec21a, Remark A.1], where va=varargin can have the forms [] (empty), va=c, or va=c,a. The
arguments c,a are then passed on to the element wise assembly edmm6g, and are treated as follows.

� If va=[], then c = 1 and a = 1 and assem6g behaves like assem6.
� If va=c, then a = 1 (assembly of standard M), and for c there are the following options:

If c is a scalar, then M−1Ku corresponds to c∆u.
If c=[c1, . . . , cnp] (one row=scalar function, given on the nodes), then M−1Ku corresponds to
∇ · (c∇u). The nodal values of c are interpolated to the element Gauss–points in edmm6g.
If c=[c1 c2; c3 c4] (constant 2× 2 matrix), then M−1Ku corresponds to ∇ · ((c1 c2c3 c4)∇u).
If c is a 2×2np matrix of nodal values, then the first row of c contains c1 and c2, and the second
row contains c3 and c4.

� If va=c,a, then a can be a number, or a row vector of nodal values.

b) All of the above applies analogously to assem10g.

c) Additionally, see the demos hofem/acS for (2) on a sphere parameterized by φ, ϑ–coordinates, where

thus the LBO has a coordinate singularity at the poles, and hofem/schnakcone for (4) on a cone and

the LBO is thus non–diagonal. See also [Uec21a, §10.1 and §10.2] for the respective results using the

linear FEM. c

A 1D

In 1D, we provide a family of higher order FEM, and we can more easily control the number of points
during mesh adaptation. On the other hand, pde2path is rather intended as a 2D or 3D tool, and
thus here we only briefly comment on the 1D case. In the demo ac1D we again consider (2), now over
Ω = (−2π, 2π) with DBCs.

To exploit the spectral FEM features of the FSElib, based on Lobatto-point discretizations of
subintervals, we use the functions p=two2lob(p) and [K,M]=assem1Dlob(p). In two2lob we use the
grid points x(1:np)=p.pdeo.grid.p(1:np) as the end points of ne=np-1 elements, and generate the
new mesh x(1:ng) by introducing npoly(j)-1 additional mesh points on the jth element. For sim-

. DRAFT
May 8, 2023 5:52 PM 12

. DRAFT

plicity, in particular in mesh–adaptation, all entries in npoly are uniformly set to p.hofem.femorder,
although non-uniform polynomial degrees can be used as well. p=two2lob(p) thus generates the
data p.hofem.xe (end points of elements), p.hofem.tri (point indizes of elements), and updates
p.pdeo.grid with the full mesh (e.g., for plotting). Based on this data, [K,M]=assem1Dlob(p) as-
sembles the 1–component (Neumann–)Laplacian stiffness matrix K and the mass matrix M as usual
(with c = a = 1). As before, these can be combined with other FEM operators (advection etc) based
on the default pde2path FEM setup in p.pdeo.2

The script ac1D/cmds thus proceeds as usual, where additional to the domain size and initial
discretization by nx elements, we choose a FEM-order m. Calling two2lob in acinit then yields
mnx + 1 total mesh-points. We compute some primary BPs from the trivial branch, find that their
accuracy quickly increases in m (and of course in nx), and compute some primary bifurcating branches.

For adaptive mesh–refinement in the higher order setting, we locally overload the library func-
tion oomeshada, and there call simplecoarselob to first coarsen then refine a given mesh. In
simplecoarselob we keep the first, the last, and every p.nc.redf–th point from the full mesh in
p.pdeo.grid.p, and use the current solution on this coarse mesh for error estimation, here using the
standard pde2path error estimator and element–to–refine selector stane2rs (controlled by p.nc.sig)
to select elements to refine, which means introducing the elements midpoint. From the new set of
elements we then again generate the full mesh via p=two2lob(p). Using suitable p.nc.redf and
p.nc.sig, for instance p.nc.redf=p.hofem.femorder+1 and moderate p.nc.sig allows good con-
trol of the number of mesh–points under adaption, see the ends of ac1D/cmds.m and ac1Dq/cmds.m.

References

[FALD12] G. Formica, A. Arena, W. Lacarbonara, and H. Dankowicz. Coupling FEM with parameter
continuation for analysis of bifurcations of periodic responses in nonlinear structures. Journal of
Computational and Nonlinear Dynamics, 8(2), 2012.

[Lui11] S. H. Lui. Numerical analysis of partial differential equations. Pure and Applied Mathematics
(Hoboken). John Wiley & Sons, Inc., Hoboken, NJ, 2011.

[Poz14] C. Pozrikidis. Introduction to finite and spectral element methods using MATLABr. CRC Press,
Boca Raton, FL, second edition, 2014.

[Prü21] U. Prüfert. OOPDE, https://tu-freiberg.de/fakult1/nmo/pruefert, 2021.

[RU19] J.D.M. Rademacher and H. Uecker. The OOPDE setting of pde2path – a tutorial via some Allen-
Cahn models, 2019.

[SU17] G. Schneider and H. Uecker. Nonlinear PDE – a dynamical systems approach, volume 182 of
Graduate Studies Mathematics. AMS, 2017.

[Uec19a] H. Uecker. Hopf bifurcation and time periodic orbits with pde2path – algorithms and applications.
Comm. in Comp. Phys, 25(3):812–852, 2019.

[Uec19b] H. Uecker. Using trullekrul in pde2path – anisotropic mesh–adaptation for some Allen–Cahn
models in 2D and 3D, Preprint, arXiv 1912.11130 , 2019.

[Uec21a] H. Uecker. Numerical continuation and bifurcation in Nonlinear PDEs. SIAM, 2021.

[Uec21b] H. Uecker. pde2path without finite elements, 2021. Tutorial on eqns on graphs, and spectral
discretizations.

2For femorder=2, two2lob and assem1Dlob correspond to a quadratic FEM, with the element midpoints as Lobatto
points. For this, there also is the function [K,M,Kx]=assem1Dq(p) which uses the quadratic FEM to also assemble Kx

corresponding to ∂x, see the demo ac1Dq.

. DRAFT
May 8, 2023 5:52 PM 13

https://tu-freiberg.de/fakult1/nmo/pruefert

. DRAFT

[Uec21c] H. Uecker. www.staff.uni-oldenburg.de/hannes.uecker/pde2path, 2021.

[UWR14] H. Uecker, D. Wetzel, and J.D.M. Rademacher. pde2path – a Matlab package for continuation
and bifurcation in 2D elliptic systems. NMTMA, 7:58–106, 2014.

. DRAFT
May 8, 2023 5:52 PM 14

www.staff.uni-oldenburg.de/hannes.uecker/pde2path

	Introduction
	The basic setup, and ac2D
	Swift–Hohenberg
	2D
	3D

	Problems on curved surfaces
	1D

