
User guide on Hopf bifurcation and time periodic orbits with pde2path

Hannes Uecker

Institut für Mathematik, Universität Oldenburg, D26111 Oldenburg, hannes.uecker@uni-oldenburg.de

May 11, 2020

Abstract

We explain the setup for using the pde2path libraries for Hopf bifurcation and continuation

of branches of periodic orbits and give implementation details of the associated demo directories.

See [Uec19] for a description of the basic algorithms and the mathematical background of the

examples. Additionally we explain the treatment of Hopf bifurcations in systems with continuous

symmetries, including the continuation of traveling waves and rotating waves in O(2) equivariant

systems as relative equilibria, the continuation of Hopf bifurcation points via extended systems,

and some simple setups for the bifurcation from periodic orbits associated to critical Floquet

multipliers going through ±1.

MSC: 35J47, 35B22, 37M20

Keywords: Hopf bifurcation, periodic orbit continuation, Floquet multipliers, partial differential equa-

tions, finite element method

Contents

1 Introduction 2

2 The cGL equation as an introductory example: Demo cgl 5

2.1 General setup . 5

2.2 1D . 8

2.3 Remarks on Floquet multipliers and time integration 11

2.4 2D . 13

2.5 3D . 14

3 An extended Brusselator: Demo brussel 14

3.1 1D . 16

3.2 2D . 19

4 A canonical system from optimal control: Demo pollution 21

5 Hopf bifurcation with symmetries 24

5.1 Mass conservation: Demo mass-cons . 24

5.2 Mass and phase constraints: Demos kspbc4 and kspbc2 27

5.3 Period doubling of a breather (demo symtut/breathe) 32

1

6 O(2) equivariance: traveling vs standing waves, and relative periodic orbits 33

6.1 The cGL equation in boxes with pBC: demo cglpbc 34

6.2 The cGL equation in a disk: demo cgldisk . 38

6.3 Reaction diffusion in a disk: Demo gksspirals . 41

6.4 Extensions: fixed period T , and non–autonomous cases 46

A Some background and formulas 50

A.1 Basics . 50

A.2 Floquet multipliers, and bifurcation from periodic orbits 53

B Data structure and function overview 55

1 Introduction

In [Uec19] we describe the basic algorithms in pde2path to study Hopf bifurcations1 in PDEs of the

form

Md∂tu = −G(u, λ), u = u(x, t), x ∈ Ω, t ∈ R, (1.1)

where Md ∈ RN×N is the dynamical mass matrix, and G(u, λ) := −∇ · (c⊗∇u) + au− b⊗∇u− f .

Here u = u(x, t) ∈ RN , x ∈ Ω with Ω ⊂ Rd some bounded domain, d = 1, 2, 3, λ ∈ Rp is a parameter

(vector), and the diffusion, advection and linear tensors c, b, a, and the nonlinearity f , can depend

on x, u,∇u, and parameters. The boundary conditions (BC) for (1.1) are of “generalized Neumann”

form, i.e.,

n · (c⊗∇u) + qu = g, (1.2)

where n is the outer normal and again q ∈ RN×N and g ∈ RN may depend on x, u, ∇u and parameters,

and over rectangular domains there additionally is the possibility of periodic BC in one or more

directions. See [Uec19], and the steady state tutorials at [Uec20b], for more details on c, b, . . . , g.

pde2path spatially discretizes the PDE (1.1), (1.2) via piecewise linear finite elements, leading to

the high–dimensional ODE problem (with a slight misuse of notation)

Mu̇ = −G(u, λ), u = u(t) ∈ Rnu , G(u) = Ku−Mf(u), (1.3)

where nu = npN is the number of unknowns, with np the number of grid points. In (1.3), M is the

mass matrix, K is the stiffness matrix, which typically corresponds to the diffusion term −∇·(c⊗∇u),

and Mf : Rnu → Rnu contains the rest, which we often also call the ’nonlinearity’. However, (1.3) is

really a sort of symbolic notation to express the spatially discretized version of (1.1), and K in (1.3)

can also involve nonlinear terms and first order derivatives coming from b ⊗ ∇u in (1.1). See, e.g.,

[RU19, RU17] for more details.

Here we first present implementation details for the four Hopf bifurcation test problems considered

in [Uec19], thus giving a tutorial on how to treat Hopf bifurcations in pde2path. See [Uec20b] for

download of the package, including the demo directories, and various documentation and tutorials. In

1i.e.: the bifurcation of (branches of) time periodic orbits (in short Hopf orbits) from steady states; accordingly, we
shall call these branches Hopf branches;

2

particular, since the Hopf examples are somewhat more involved than the steady case we recommend to

new users of pde2path to first look into [RU19], which starts with some simple steady state problems.

The first Hopf demo problem (demo cgl, subdir of hopfdemos) is a cubic–quintic complex Ginzburg–

Landau (cGL) equation, which we consider over 1D, 2D, and 3D cuboids with homogeneous Neumann

and Dirichlet BC. Next we consider a Brusselator system (demo brussel) from [YDZE02], which shows

interesting interactions between Turing branches and Turing–Hopf branches. As a non–dissipative ex-

ample we treat the canonical system for an optimal control problem (see also [dWU19]) of “optimal

pollution” (demo pollution). This is still of the form (1.1), but is ill–posed as an initial value prob-

lem, since it features “backward diffusion”. Nevertheless, we continue steady states and obtain Hopf

bifurcations and branches of periodic orbits.

In §5 we give three tutorial examples for Hopf bifurcations in systems with continuous symme-

tries, namely a reaction-diffusion problem with mass conservation (demo mass-cons), a Kuramoto-

Sivashinsky equation with translational and boost invariance (demos kspbc2 and kspbc4), and a

FHN type system with (breathing) pulses featuring an approximate translational symmetry (demo

symtut/breathe). Such symmetries were not considered systematically in [Uec19]. They require

phase conditions, first for the reliable continuation of steady states and detection of (Hopf or steady)

bifurcations, which typically lead to the coupling of (1.1) with algebraic equations. To compute Hopf

branches we then also need to set up suitable phase conditions for the Hopf orbits. See also [RU17],

where preliminary results for the breathing pulses are discussed, and one more example of Hopf orbits

for systems with symmetries is considered, namely modulated traveling fronts in a combustion model.

Moreover, additional to [Uec19, RU17] we explain some further routines such as continuation of Hopf

bifurcation points, and some simple setups for branch switching from Hopf orbits, i.e., for Hopf pitch-

forks (critical multiplier 1) and period doubling (critical multiplier −1). See also [Uec20a, §8] for

further examples of period–doubling bifurcations in a classical two–component Brusselator system,

following [YZE04].

In §6 we consider Hopf bifurcation in O(2) equivariant systems, which generically leads to coexis-

tence of standing waves (SWs) and traveling waves (TWs). We start with the cGL equation over an

interval with periodic BC (pBC) (demo cglpbc) and use an appropriate additional phase condition

to continue TWs, periodic in the lab frame, but steady in the co–moving frame) as relative equilib-

ria, from which we obtain modulated TWs via Hopf bifurcation in the co–moving frame. A similar

approach for the cGL equation in a disk with Neumann BC (demo cgldisk) yields spiral waves as

rotating waves (RWs), and meandering spirals as modulated RWs. Then we review and extend an

example from [Uec19, §3.2], namely a reaction diffusion system in a disk and with Robin BC (demo

gksspirals), following [GKS00]. In all these examples, the ’interesting’ Hopf bifurcation points have

multiplicity at least two, leading to SWs vs TWs (or RWs). Our default branch switching so far only

deals with simple Hopf bifurcation points systematically, but we use and explain an ad hoc modifica-

tion for Hopf points of higher multiplicity, allowing to select, e.g., TW vs SW branches. At the end of

§6 we also explain a setup to compute periodic orbit branches with fixed period T (freeing a second

parameter), and for non–autonomous systems, i.e., with explicit t–dependence of G.

The user interfaces for Hopf bifurcations reuse the standard pde2path setup and no new user

functions are necessary, except for the case of symmetries, which requires one additional user function.

For the basic ideas of continuation and bifurcation in steady problems we refer to [UWR14] (and the

references therein), for pde2path installation hints and review of data structures to [dWDR+20], for

a general soft introduction to [RU19], and for the basic algorithms implemented in the hopf library of

pde2path to [Uec19]. Thus, here we concentrate on how to use these routines, and on recent additions.

3

The basic setup of all demos is similar. Each demo directory contains:

• Function files named *init.m for setting up the geometry and the basic pde2path data, where

* stands for the problem, e.g., cgl (and later brussel, ...).

• Main script files, such as cmds*d.m where * stands for the space dimension.

• Function files sG.m and sGjac.m for setting up the rhs of the equation and its Jacobian. Most

examples are 2nd order semilinear, i.e., of the form ∂tu = −G(u) = D∆u + f(u) with diffusion

matrix D ∈ RN×N , and we put the ’nonlinearity’ f (i.e., everything except diffusion) into a

function nodalf.m, which is then called in sG.m, but also in mesh-adaption and in normal form

computations. An exception is the KS equation, see §5.2.

• a function oosetfemops.m for setting up the system matrices.

• A few auxiliary functions, for instance small modifications of the basic plotting routine hoplot.m

from the hopf library, which we found convenient to have problem adjusted plots.

• Some auxiliary scripts auxcmds.m, which contain commands, for instance for creating movies or

for mesh–refinement, which are not genuinely related to the Hopf computations, but which we

find convenient for illustrating either some mathematical aspects of the models, or some further

pde2path capabilities, and which we hope the user will find useful as well.

• For the demo pollution (an optimal control problem) we additionally have the functions

polljcf.m, which implements the objective function, and pollbra.m, which combines output

from the standard Hopf output hobra.m and the standard OC output ocbra.m.

In all examples, the meshes are chosen rather coarse, to quickly get familiar with the software. We

did check for all examples that these coarse meshes give reliable results by running the same simulations

on finer meshes, without qualitative changes. We give hints about the timing and indications of

convergence, but we refrain from a genuine convergence analysis. In some cases (demos cgl in 3D and

brussel in 2D, and cgldisk, gksspirals) we additionally switch off the on the fly computation of

Floquet multipliers and instead compute the multipliers a posteriori at selected points on branches.

Computing the multipliers simultaneously is possible as well, but may be slow. Nevertheless, even

with the coarse meshes some commands, e.g., the continuation of Hopf branches in 3+1D (with about

120000 total degrees of freedom), may take several minutes. All computational times given in the

following are from a 16GB i7 laptop with Linux Mint 18 and Matlab 2016b.

In §2 to §6 we explain the implementations for the four demos from [Uec19] and the extensions,

and thus in passing also the main data-structures and functions from the hopf library. In particular,

in §3 we extend some results from [Uec19] by Hopf point continuation, and in §5 explain the setup for

the systems with symmetries and hence constraints. For the unconstrained theory, and background on

the first three example problems, we refer to [Uec19], but for easier reference and to explain the setup

with constraints, we also give the pertinent formulas in Appendix A. This also helps understanding

a number of new functions, for instance for continuation of TWs and RWs, and for bifurcation from

periodic orbits, and Appendix B contains an overview of the functions in the hopf library and of

the relevant data structures for quick reference. For comments, questions, and bugs, please mail to

hannes.uecker@uni-oldenburg.de.

Acknowledgment. Many thanks to Francesca Mazzia for providing TOM [MT04], which was es-

sential help for setting up the hopf library; to Uwe Prüfert for providing OOPDE; to Tomas Dohnal,

Jens Rademacher and Daniel Wetzel for some testing of the Hopf examples; to Daniel Kressner for

pqzschur; and to Dieter Grass for the cooperation on distributed optimal control problems, which

was one of my main motivations to implement the hopf library.

4

2 The cGL equation as an introductory example: Demo cgl

We consider the cubic-quintic complex Ginzburg–Landau equation

∂tu = ∆u+ (r + iν)u− (c3 + iµ)|u|2u− c5|u|4u, u = u(t, x) ∈ C, (2.1)

with real parameters r, ν, c3, µ, c5. In real variables u1, u2 with u = u1 + iu2, (2.1) can be written as

the 2–component system

∂t

(
u1

u2

)
=

(
∆ + r −ν
ν ∆ + r

)(
u1

u2

)
− (u2

1 + u2
2)

(
c3u1 − µu2

µu1 + c3u2

)
− c5(u2

1 + u2
2)2

(
u1

u2

)
. (2.2)

We set c3 = −1, c5 = 1, ν = 1, µ = 0.1, and use r as the main bifurcation parameter. Considering

(2.2) on, e.g., a (generalized) rectangle

Ω = (−l1π, l1π)× · · · × (−ldπ, ldπ) (2.3)

with homogeneous Dirichlet BC or Neumann BC, or with periodic BC, we can explicitly calculate all

Hopf bifurcation points from the trivial branch u = 0, located at r = |k|2 := k2
1 + . . .+ k2

d, with wave

vector k ∈ Z/(2l1)× . . .× Z/(2ld).
In particular from the bifurcation point of view, an important feature of the cGL equation (2.1)

are its various symmetries, as also discussed in [RU17]. For homogeneous Neumann and Dirichlet

BCs, (2.1) has the gauge (or rotational) symmetry u 7→ eiφu, i.e., (2.1) is equivariant wrt the action of

the special orthogonal group SO(2). Periodic boundary conditions imply a translation invariance as

an in general additional SO(2) equivariance, as on the real line. However, for wavetrains (or traveling

waves) u(t, x) = R exp(i(kx − ωt)), where R > 0 and ω, k ∈ R are the amplitude, frequency and

wave number, respectively, the rotation and translation have the same group orbits. Therefore, in

contrast to the steady case [RU17], for our purposes here the gauge symmetry will not play a role.

Additional, (2.1) has the reflection symmetry x 7→ −x (1D, and analogously for suitable BC over

higher dimensional boxes with suitable BC). Thus, in summary, for pBC (and also for the cGL in a

disk with e.g., Neumann BC where the role of spatial translation will be played by spatial rotation,

the pertinent symmetry group is O(2). Consequently, many Hopf bifurcation points from the trivial

solution will be at least double, and in §6 we discuss this case and the associated questions of the

bifurcation of standing vs traveling waves, and their numerical treatment in pde2path.

Here we shall first focus on (2.1) over boxes with BC that break the translational invariance, such

that only discrete symmetries remain, since, as noted above, for Hopf bifurcation the gauge invariance

is equivalent to time shifts, and hence is automatically factored out by the phase condition for time

shifts. Moreover, we shall choose boxes such that all HBPs are simple.

2.1 General setup

The cGL demo directory consists, as noted above, of some function files to set up and describe

(2.2), some script files to run the computations, and a few auxiliary functions and scripts to explain

additional features, or, e.g., to produce customized plots. An overview is given in Table 1, and for

this ’first’ demo we discuss the main files in some detail, while in later demos we will mainly focus on

differences to this basic template.

5

Table 1: Scripts and functions in hopfdemos/cgl. Treating the 1D, 2D and 3D cases in one directory,

the only dimension dependent files are the scripts, and the function cGLinit. The 2nd part of the table

contains auxiliary functions and scripts which are not needed for the Hopf computations, but which illustrate

additional pde2path features.

script/function purpose,remarks

cmds*d main scripts; for ∗ = 1, 2, 3, respectively, which are all quite similar, i.e.,
mainly differ in settings for output file names. Thus, only cmds1d is dis-
cussed in some detail below.

p=cGLinit(p,lx,nx,par,ndim) init function, setting up parameters and function handles, and, as the only
space dimension d=ndim dependent points, the domain.

p=oosetfemops(p) set FEM matrices (stiffness K and mass M)
r=sG(p,u) encodes G from 2.2 (including the BC)
f=nodalf(p,u) the ’nonlinearity’ in (2.2), i.e., everything except D∆u.
Gu=sGjac(p,u) Jacobian ∂uG(u) of G.

auxcmds1 script, auxiliary commands, illustrating stability checks by time-integration,
and a posteriori computation of Floquet multipliers

auxcmds2 script, auxiliary commands, illustrating (adaptive) mesh-refinement by ei-
ther switching to natural parametrization, or via hopftref

cmds1dconv script showing some convergence of periods in 1D for finer t discretization
plotana1 plot analytical Hopf-branch for cGL for comparison with numerics, used in

cmds1d.m, calls mvu=anafloq(rvek,s)
homov2d, homov3d auxiliary functions to generate movies of Hopf orbits

As main functions we have

• cGLinit.m, which (depending on the spatial dimension) sets up the domain, mesh, boundary

conditions, and sets the relevant function handles p.fuha.sG=@sG and p.fuha.sGjac=@sGjac

to encode the rhs of (2.2);

• sG.m and sGjac, which encode (2.2) and the associated Jacobian of G;

Then we have three script files, cmds*d.m, where *=1,2,3 stands for the spatial dimension. These are

all very similar, i.e., only differ in file names for output and some plotting commands, but the basic

procedure is always the same:

1. call cGLinit, then cont to find the HBPs from the trivial branch u ≡ 0, r ∈ R;

2. compute branches of periodic orbits (including Floquet multipliers) by calling hoswibra and

cont again, then plotting.

Listings 5-4 discuss the dimension independent (function) files. We use the OOPDE setup, and thus

we refer to [RU19] for a general introduction concerning the meaning of the stiffness matrix K, the

mass matrix M and the BC matrices Q (and GBC, not used here), and the initialization methods

stanpdeo*D, ∗ = 1, 2, 3, setting up an OOPDE object which contains the geometry and FEM space,

and the methods to assemble the system matrices.

function p=cGLinit(p,lx,nx,par ,ndim) % (generic) init routine for cGL problem

p=stanparam(p); screenlayout(p); % set standard parameters and screenlayout

p.fuha.sG=@sG; p.fuha.sGjac=@sGjac; p.sw.jac=1; % rhs and Jac

p.nc.neq=2; p.nc.ilam =1; p.fuha.outfu=@hobra; % number of eq, cont -param , output

5 switch ndim % domain and BC , depending on spatial dim

case 1; pde=stanpdeo1D(lx ,2*lx/nx); p.vol =2*lx; p.x0i =10; % index for ts -plot

bc=pde.grid.neumannBC(’0’); % BC

case 2; pde=stanpdeo2D(lx ,lx/2,2*lx/nx); p.vol =2*lx^2; p.x0i =30;

bc=pde.grid.robinBC(’1’,’0’);

10 case 3; pde=stanpdeo3D(lx ,lx/2,lx/4,2*lx/nx); p.vol =0.5*lx^3; p.x0i =200;

6

bc=pde.grid.robinBC(’1’,’0’);

p.plot.ng=20; p.plot.lev=[-0.1 0.1]; % 3D specific plot settings

p.plot.levc={’blue’,’red’}; p.plot.alpha =0.5;

end

15 pde.grid.makeBoundaryMatrix(bc); p.nc.sf=1e3; p.pdeo=pde; % OOPDE setting of BC

p.sw.sfem=-1; p.np=pde.grid.nPoints; p.nu=p.np*p.nc.neq; p.sol.xi=1/p.nu;

p=setfemops(p); % setfemops calls oosetfemops in problem dir

u=0* ones(p.np ,1); v=u; p.u=[u;v; par]; % initial guess (here trivial) and pars

p.usrlam =[-0.25 -0.2 -0.1 0 0.5 1 2 3]; % user -vals for output

20 p.plot.cm=hot; p.plot.bpcmp =9; % colormap for soln plot , comp.for branch -plot

[p.u,res]=nloop(p,p.u);fprintf(’first res=%g\n’,res); % start -point for cont

p.file.smod =10; p.sol.ds=0.1; p.nc.dsmax =0.5; % saving , stepsize , max stepsize

p.sw.bifcheck =2; p.nc.neig =20; % method for bifcheck , and # Evals used

p.nc.mu1 =0.5; % be relaxed about possible bif -detection

Listing 1: cgl/cGLinit.m, which collects some typical initialization commands. p=stanparam(p) in line
2 sets the pde2path controls, switches and numerical constants to standard values; these can always be
overwritten afterwards, and some typically are. In line 3 set the function handles to the rhs and its Jacobian,
and similarly in line 4 we (re)set the output function handle to hobra, which can be used as a standard output
when Hopf bifurcations are expected. In lines 5-14, depending on the spatial dimension, we create a 1D, 2D
or 3D OOPDE objects, essentially consisting of the domain, the FEM setup and the boundary condition. In 1D,
this is the interval (-lx,lx) with mesh width lx/nx, and homogeneous Neumann BC. In line 15 we finish this by
preparing the associated BC matrices, and afterwards we put this PDE–object, the number of grid points, and
the associated norm weight ξ into p. Calling setfemops in line 17 then immediately refers to oosetfemops,
see Listing 5. In line 18 we initialize the solution vector (here with the explicitly known trivial solution u = 0
and append the parameters. In the remainder of cGLinit we set some additional controls, mostly explained
by the comments. We only remark that p.sw.bifcheck=2 in line 23 tells pde2path to use algorithm HD2
[Uec19, §2.1] to detect bifurcations, by computing neig=p.nc.neig=20 eigenvalues near 0. This is a suitable
choice since ∂uG(0) has no real eigenvalues. p.nc.mu1 in line 24 refers to µ1 from [Uec19, Remark 2.2].
Finally, p.vol in lines 6,8 and 10 is used in the norm (2.4), and p.x0i is a point index for plotting the
time-series t 7→ u(t, xp.x0i).

function r=sG(p,u) % compute pde -part of residual

f=nodalf(p,u); r=p.mat.K*u(1:p.nu)-p.mat.M*f;

Listing 2: cgl/sG.m. Given K and M from oosetfemops, we only need to compute the ’nonlinearity’ f , which
we outsource to nodalf, see Listing 3, and then compute the rhs G (or residual r) as G(u) = Ku −Mf .
Note that the BC are already included in p.mat.K via line 7 of oosetfemops.

function f=nodalf(p,u) % nonlinearity for cGL

u1=u(1:p.np); u2=u(p.np +1:2*p.np); par=u(p.nu+1: end); % extract fields

r=par(1); nu=par(2); mu=par(3); c3=par(4); c5=par(5); % and parameters

ua=u1.^2+u2.^2; % aux variable |u|^2

5 f1=r*u1-nu*u2-ua.*(c3*u1 -mu*u2)-c5*ua .^2.*u1;

f2=r*u2+nu*u1-ua.*(c3*u2+mu*u1)-c5*ua .^2.*u2;

f=[f1;f2];

Listing 3: cgl/nodalf.m. The ’nonlinearity’ (which includes linear terms, i.e., everything except the diffusion
terms) f from (2.2). We extract the two components u1 and u2, and the parameters from u, introduce an
auxiliary variable ua= |u|2, and write down the components of f in a standard Matlab way.

function Gu=sGjac(p,u) % Jacobian for cGL

n=p.np; [f1u ,f1v ,f2u ,f2v]=njac(p,u); % the main work

Fu=[[spdiags(f1u ,0,n,n),spdiags(f1v ,0,n,n)]; % put partial derivatives

[spdiags(f2u ,0,n,n),spdiags(f2v ,0,n,n)]]; % into (sparse) Jac

5 Gu=p.mat.K-p.mat.M*Fu; % multiply by -M and add Laplacian

end

7

function [f1u ,f1v ,f2u ,f2v]=njac(p,u) % local (no spat.derivatives) Jacobian

u1=u(1:p.np); u2=u(p.np +1:2*p.np); par=u(p.nu+1: end); % extract fields

10 r=par(1); nu=par(2); mu=par(3); c3=par(4); c5=par(5); % and parameters

ua=u1.^2+u2.^2;

f1u=r-2*u1.*(c3*u1 -mu*u2)-c3*ua -4*c5*ua.*u1.^2-c5*ua.^2;

f1v=-nu -2*u2.*(c3*u1 -mu*u2)+mu*ua -4*c5*ua.*u1.*u2;

f2u=nu -2*u1.*(c3*u2+mu*u1)-mu*ua -4*c5*ua.*u1.*u2;

15 f2v=r-2*u2.*(c3*u2+mu*u1)-c3*ua -4*c5*ua.*u2.^2-c5*ua.^2;

end

Listing 4: cgl/sGjac.m. Similar to sG, the main problem specific part is ∂uf , put into njac, the
implementation of which follows immediately from nodalf. Gu in line 5 is then rather generic.

function p=oosetfemops(p) % FEM operators for cGL

grid=p.pdeo.grid; % just a shorthand

[K,M,~]=p.pdeo.fem.assema(grid ,1,1,1); % assemble ’scalar ’ K and M

[Q,~,~,~]=p.pdeo.fem.assemb(grid); % BC matrix

5 sf=p.nc.sf; % stiff spring factor to implement DBC

N=sparse(grid.nPoints , grid.nPoints); % 0-matrix , another shorthand

p.mat.K=[[K+sf*Q N];[N K+sf*Q]]; % build 2-comp. system K

p.mat.M=kron ([[1 ,0];[0 ,1]] ,M); % and M

Listing 5: cgl/oosetfemops.m. This sets the stiffness matrix K, the mass matrix M, and the BC matrix
Q for (2.2); see [RU19, §1] for the meaning of these matrices. K∈ Rnp×np in line 2 is the ’scalar’ (i.e., one
component) Neumann Laplacian, while M is the scalar mass matrix. Similarly, Q∈ Rnp×np in line 3 is a BC
matrix for one component, and its content depends on the BC set in lines 7, 9 and 11 of cGLinit. In line 6
of oosetfemops we create a zero matrix for convenience, and in lines 5,6 we then set up the FEM matrices
for the system (2.2). Here both diagonal blocks of p.mat.K are equal, because so are the diffusion constants
for both components in (2.2) and the BC we consider. However, this setup is quite flexible to implement also
more complicated differential operators, including off-diagonal blocks (’cross diffusion’), first order differential
operators, and different BC in different components.

2.2 1D

In 1D we use Neumann BC, and nx = 31 spatial, and (without mesh-refinement) m = 21 temporal

discretization points. Listings 6 and 7 shows the main script file cmds1d.m for 1D computations (with

some omissions wrt to plotting), while Fig. 1 shows some output generated by running cmds1d. The

norm in (a) is

‖u‖∗ := ‖u‖L2(Ω×(0,T),RN)/
√
T |Ω|, (2.4)

which is our default for plotting of Hopf branches. During the continuation the default plotting

routine hoplot also plots the time–series t 7→ u1(x0, t), u2(x0, t) for some mesh point x0, selected by

the index p.hopf.x0i, which is set in cGLinit (see also Fig. 1(b))). The simulations run in less than

10 seconds per branch, but the rather coarse meshes lead to some inaccuracies. For instance, the first

three HBPs, which analytically are at r = 0, 1/4, 1, are obtained at r = 6 ∗ 10−5, 0.2503, 1.0033, and

(b) also shows some visible errors in the period T . However, these numerical errors quickly decay if

we increase nx and m, and runtimes stay small.

8

(a) BD, norm ‖u(·, ·; r)‖∗ (b) Example plots

(c) Multipliers at b1/pt8 (ind = 1) and b2/pt5 (ind = 3)
(left), and at b1/pt27 (ind = 0) (right)

(d) left: BD, period T (r). Right: numerical
periods (for m = 20, 40, 60) and analytical
period (black dots) on the 1st branch

0 0.5 1

r

6.5

7

7.5

T

27

19

17

0.6 0.8 1

r

7.3

7.35

7.4

7.45

7.5

T

Figure 1: Selected outputs from cmds1d.m, i.e., numerical bifurcation diagrams, example plots and (leading

20) Floquet multipliers for (2.2) on the domain Ω = (−π, π) with Neumann BC, 30 grid–points in x. Param-

eters (ν, µ, c3, c5) = (1, 0.1,−1, 1), hence bifurcations at (restricting to the first three branches) r = 0 (k = 0,

spatially homogeneous branch, black), r = 1/4 (k = 1/2, blue) and r = 1 (k = 1, red). The thick part of

the black line in (a) indicates the only stable periodic solutions. The black dots in (a) and (d) are from the

(spatially homogeneous) analytical solution, see [Uec19]. For m = 20 there is a visible error in T . The right

panel of (d) shows the numerical T for different m (m = 20 black, m = 40 red-dashed, m = 60 blue-dotted),

which illustrates the convergence of the numerical solution towards the analytical solution (6.8). Similarly,

the periods also converge on the other branches (see cmds1dconv.m). The second plot in (b) shows a time

series at the point p.hopf.x0i from b1/pt27. See also Fig. 2(b) for a plot of b3/pt17.

As usual we recommend to run cmds1d cell-by-cell to see the effect(s) of the individual cells.

%% C1: init , and continuation of trivial branch

ndim =1; dir=’hom1d’; p=[]; lx=pi/2; nx=30; % domain size and spat.resolution

par =[-0.05; 1; 0.1; -1; 1]; % r nu mu c3 c5

p=cGLinit(p,lx,nx,par ,ndim); p=setfn(p,dir); % initialization and dirname

5 p.sw.verb =2; p=cont(p,20); % cont of (here) trivial branch , incl. bif -detec

%% C2: first 2 Hopf branches , run arclength from the start

para =4; ds =0.1; figure (2); clf; aux =[]; %aux.tl=60;

for bnr =1:2

switch bnr

10 case 1; p=hoswibra(’hom1d’,’hpt1’,ds ,para ,’1db1’,aux); nsteps =30;

case 2; p=hoswibra(’hom1d’,’hpt2’,ds ,para ,’1db2’); nsteps =20;

end

p.hopf.jac=1; p.nc.dsmax =0.5; p.hopf.xi =0.05; p.file.smod =5; p.sw.verb =2;

p.hopf.flcheck =2; % switch for Floquet -comp: 0: off , 1:floq , 2: floqps

15 bw=1; beltol =1e-6; belimax =5; % border -width , bel -parameters

9

droptol =1e-3; AMGmaxit =200; % ilupack parameters (only needed if AMG=1)

AMG =1; % set AMG=1 if ilupack available

if ~AMG; p=setbel(p,bw,beltol ,belimax ,@lss); % use BEL without ilupack

else p=setbel(p,bw ,beltol ,belimax ,@lssAMG); p=setilup(p,droptol ,AMGmaxit);

20 end

t1=tic; p=cont(p,nsteps); toc(t1)

end

%% C3: on branch 3, use tomsol for initial steps , then switch to arclength

ds=0.2; para =3; p=hoswibra(’hom1d’,’hpt3’,ds ,para ,’1db3’);

25 p.hopf.xi =0.05; p.hopf.jac=1; p.nc.dsmax =0.25;

p.hopf.tom.AbsTol =1e-4; p.hopf.tom.RelTol =1e-3; % tolerances for TOM

p=cont(p,5); % do 5 steps in natural parametrization

p.sw.para =4; % then switch to arclength

if ~AMG; p=setbel(p,bw ,beltol ,belimax ,@lss); % use BEL without ilupack

30 else p=setbel(p,bw -1,beltol ,belimax ,@lssAMG); p=setilup(p,droptol ,AMGmaxit); end

tic; p=cont(p,15); toc

Listing 6: cgl/cmds1d.m (first four cells). In cell 1 we initialize the problem and continue the trivial
branch (with standard settings) to find the HBPs. In cell 2 we then compute the first 2 bifurcating Hopf
branches in the arclength setting. See Appendix B for comments on hoswibra, which sets all the data
structures for periodic orbit continuation and of course an initial guess, and thus is the main routine here.
In line 15 we switch on the Floquet computation with floq, see §2.3. In line 16 we set parameters for the
(optional) bordered elimination linear system solver lssbel, see [Uec19, Remark 2.3], and in line 17 for the
preconditioned ilupack solver [Bol11] lssAMG as an inner solver for lssbel. This is optional, and controlled
by the switch AMG in line 18. See lines 19,20 for the convenience functions to switch on these solvers and
to set parameters. For the present 1D problem, both lssAMG or just lss are roughly equally fast, but for
larger scale problems lssAMG is significantly faster. In any case, without ilupack, lssbel gives a significant
speedup over lss for bordered systems, see also [UW17] for a tutorial on these solvers. In cell 3 we do the
initial steps for the third Hopf branch in natural parametrization, which gives a refinement of the t-mesh by
TOM from m = 21 to m = 41 (here uniform due to the harmonic nature of the time-dependence). We then
switch to arclength and proceed as before.

cmp =9; wnr=3; figure(wnr);clf;plotbra(’hom1d’,3,cmp ,’lsw’ ,4); % label only HBPs

plotbra(’1db1’,3,cmp ,’lab’ ,[8,27]); % ... some omissions

cmp =6; figure(wnr); clf; plotbra(’1db1’,3,cmp , ’lab’,27, ’fp’ ,1); % plot BD , T

hoplotf(’1db1’,’pt27’ ,1,1); figure (1); title(’1db1/pt27’); % plot solns

Listing 7: cgl/cmds1d.m continued, to illustrate (with some omissions) the plot of bifurcation diagrams and
solutions. Since in cGLinit we set p.fuha.outfu=@hobra, i.e., to the standard Hopf branch output, and since
we have 5 parameters in the problem, the period T is at (user-)component 6 of the branch, then follow min
and max, and component 9 contains the L2 norm; see also [dW17] for details on the organization of the
branch data and on plotbra.

Switching to continuation in another parameter works just as for stationary problems by calling

p=hoswiparf(...). See Cells 1 and 2 of cgl/auxcmds1.m for an example, and Fig. 2(a) for illustration.

Cells 3 and 4 of auxcmds1.m then contain examples for mesh-refinement in t, for which there are

essentially two options. The first is to use p.sw.para=3 and the mesh-adaption of TOM, the second

is hopftref, see Listing 8.

%% C1: change continuation param

p=hoswiparf(’1db1’,’pt28’,’c5b’ ,5,0.1); clf(2); p.usrlam =0.25; p=cont(p,20);

%% C2: plot BD and solns

bpcmp =6; pstyle =3; wnr=3; figure(wnr); clf;

5 plotbraf(’c5b’,’pt18’,3,bpcmp); xlabel(’c_5’); ylabel(’T’);

%% C3: mesh -refinement in t using TOM:

p=loadp(’1db2’,’pt10’,’1db1ref ’); hoplot(p,4,1,1);

10

% switch to nat.-parametr., and reset tolerances , then cont

p=arc2tom(p); p.hopf.tau =[]; p.sol.ds =0.01;

5 p.hopf.tom.AbsTol =5e-5; p.hopf.tom.RelTol =5e-4; p=cont(p,5);

p.sw.para =4; p=tom2arc(p); p=cont(p,5); % switch back to arclength and cont

%% C4: mesh -refinement using hopftref

p=loadp(’1db3’,’pt17’,’1db1ref ’);

% hogradinf(p); % info about max_t |udot| (here useless , since u is harmonic)

10 p=hopftref(p,4); p=cont(p,5); % bisect 5 intervals after t=4 and cont

%% C5: uniform mesh -refinement

p=loadp(’1db3’,’pt17’,’1db1ref ’); fac =2.3;

p=uhopftref(p,fac); p=cont(p,5); % increase # time -slices by fac , then cont

Listing 8: cgl/auxcmds1.m. Cells 1 and 2 illustrate switching to another continuation parameter, while cells
3 and 4 give simple examples of mesh-adaption in t. In cell 3 we use the error estimator build into TOM. In
cell 4 we use hopftref, which is a purely ad hoc refinement, and which requires a time t∗ where to refine
from the user. In some cases, the convenience function hogradinf(p), which inter alia returns the time t∗

where ‖∂tu(·, t)‖∞ is maximal, is useful, though not in this problem since the solutions considered here are
rather time harmonic. Note that in contrast to cell 3, or to the routine meshada for spatial mesh refinement,
neither hogradinf(p) nor hopftref deal with error estimates in any sense.

(a) BD T (c5) (b) u1 at b3/pt17 (c) u1 from (b) after calling hopftref.

−2
0

2 0

2

4

6

−1

0

1

−2
0

2 0

2

4

6

−1

0

1

Figure 2: Example outputs from auxcmds1.m. (a) Continuing the solution b1/pt28 from Fig. 1(a,b) in

c5, with comparison to the analytical formula [Uec19, §3.1]. (b), (c) Solution at b3/pt17 before and after

mesh-refinement in t via hopftref, here near t∗ = 4.

2.3 Remarks on Floquet multipliers and time integration

For the Floquet multipliers γj, j = 1, . . . , nu (nu = Nnp with np the number of spatial discretization

points, see (1.3)) we recall from [Uec19, §2.4] that we have two algorithms for their computation:2

• FA1 (encoded in the function floq) computes 0 ≤ p.hopf.nfloq ≤ nu multipliers as eigenvalues

of the monodromy matrix M.

• FA2(encoded in floqps) uses a periodic Schur decomposition of the matrices building M to

compute all nu multipliers.

FA2 is generally much more accurate and robust, but may be slow.3 See also line 15 in Listing 6.

There always is the trivial Floquet multiplier γ1 = 1 associated to translational in t, and we use

errγ1 := |γ1 − 1| with the numerical γ1 as a measure for the accuracy of the multiplier computation.

2in the software we typically call the Floquet multipliers µ instead of γ
3For floqps one needs to mex percomplex.f(F) in the directory pqzschur, see the README file there.

11

Furthermore we define the index of a periodic orbit uH as

ind(uH) = number of multipliers γ with |γ| > 1 (numerically: |γ| > 1+p.hopf.fltol), (2.5)

such that ind(uH) > 0 indicates instability.

On b1 in Fig. 1, initially there is one unstable multiplier γ2, i.e., ind(uH) = 1, which passes through

1 to enter the unit circle at the fold. On b2 we start with ind(uH) = 3, and have ind(uH) = 2 after

the fold. Near r = 0.45 another multiplier moves through 1 into the unit circle, such that afterwards

we have ind(uH) = 1, with, for instance γ2 ≈ 167 at r = 1. Thus, we may expect a bifurcation near

r = 0.45, and similarly we can identify a number of possible bifurcation on b3 and other branches.

The trivial multiplier γ1 is 10−12 close to 1 in all these computations, using floq.

In cgl/auxcmds2.m we revisit these multiplier computations, and complement them with time-

integration. For the latter, the idea is to start time integration from some point on the periodic orbit,

e.g. u0(·) = uH(·, 0), and to monitor, inter-alia, e(t) := ‖u(t, ·)−u0(·)‖, where by default ‖ · ‖ = ‖ · ‖∞.

Without approximation error for the computation of uH (including the period T) and of t 7→ u(·, t)
we would have e(nT) = 0. In general, even if uH is stable we cannot expect that, in particular due

to errors in T which will accumulate with n, but nevertheless we usually can detect instability of uH
if at some t there is a qualitative change in the time–series of e(t).4 In Fig. 3(a), where we use the

smaller amplitude periodic solution at r = 0 for the IC, this happens right from the start. Panel (b)

illustrates the stability of the larger amplitude periodic solution at r = 0, while in (c) the instability

of the solution on h2 at r = 1 manifests around t = 30, with subsequent convergence to the (stable)

spatially homogeneous periodic orbit

%% C1: plotting of precomputed multipliers

h=plotfloq(’1db1’,’pt8’);

%% C2: a posteriori compute and plot multipliers

aux =[]; aux.wnr=6; aux.nfloq =10;

5 [muv1 ,muv2]= floqap(’1db2’,’pt10’,aux); axis tight;

%% C3: this cell only if percomplex has been mexed

aux.wnr=8; [muv1 ,muv2]= floqpsap(’1db2’,’pt10’,aux);

%% C4: time -integration , preparations

p=loadp(’1db1’,’pt20’); hoplot(p,1,1); dir=’stab1d1 ’;

10 p.u(1:p.nu)=p.hopf.y(1:p.nu ,1); u0=p.u(1:p.nu); p=setfn(p,dir);

ts=[]; t0=0; npp =50; nt =200; pmod =50; smod =5; tsmod =1; nc=0;

%% C5: time -integration (repeat if necessary)

[p,t0,ts,nc]= hotintxs(p,u0,t0,ts,npp ,nt,nc,tsmod ,pmod ,smod ,@nodalf ,1);

figure (4); clf; plot(ts(1,:), ts(2,:)); % plot values at selected point

15 figure (5); clf; plot(ts(1,:), ts(3,:)); % plot difference in norm

%% C6: x-t plot; see in ts if there ’s something interesting after np

% periods , then plot around there

si=3* npp; incr =25; nt=5* npp/smod; wnr =2; cmp =1; vv=[30 ,70]; nt=15;

tintplot1d(dir ,si,incr ,nt,wnr ,cmp ,vv);

Listing 9: cgl/auxcmds2.m. Cells 1-3 deal with Floquet computations as indicated in the comments. Cells
4-6 deal with time integration. In line 10 we set up u(·, t0) from the Hopf-orbit in 1db1/pt8 as an initial
condition, and set some parameters. This is used in Cell 5 for time integration via hotintxs (see source for
documentation), and Cell 6 plots the results, see Fig. 3.

4 The time integration hotintxs takes inter alia the number npp of time steps per period T as argument. Time
integration is much faster than the BVP solver used to compute the periodic orbits, and thus npp can be chosen
significantly larger than the number m of time-discretization points in the BVP solver. Thus, choosing npp = 5m or
npp = 10m appears a reasonable practice.

12

(a) Time series and solution for IC b1/pt8 (b) IC b1/pt27 (c) IC b2/pt19

Figure 3: Selected output from auxcmds2.m, i.e., stability experiments for (2.2) in 1D. (a) IC h1/pt8, time

series of ‖u(·, t)−u0‖∞ and u1(x, t), showing the convergence to the larger amplitude solution at the same r.

(b) IC h1/pt27 from Fig. 1, where we plot ‖u(·, t)−u0‖∞ for t ∈ [0, 4T], which shows stability of the periodic

orbit, and a good agreement for the temporal period under time integration. (c) instability of b2/pt19 from

Fig. 1, and again convergence to the solution on the b1 branch. Note that the time–stepping is much finer

than the appearance of the solution plots, but we only save the solution (and hence plot) every 100th step,

cf. footnote 4.

2.4 2D

In 2D we choose homogeneous Dirichlet BC for u1, u2, see lines 8,9 in cGLinit, and oosetfemops.m.

Then the first two HBPs are at r1 = 5/4 (k = (1/2, 1), and r2 = 2 (k = (1, 1)). The script file

cmds2d.m follows the same principles as cmds1d.m, and includes some time integration as well, and

in the last cell an example for creating a movie of a periodic orbits.

Figure 4 shows some results from cmds2d.m, obtained on a coarse mesh of 41 × 21 points, hence

nu = 1722 spatial unknowns, yielding the numerical values r1 = 1.2526 and r2 = 2.01. With m = 20

temporal discretization points, the computation of each Hopf branch then takes about a minute.

Again, the numerical HBPs converge to the exact values when decreasing the mesh width, but at the

prize of longer computations for the Hopf branches. For the Floquet multipliers we obtain a similar

picture as in 1D. The first branch has ind(uH) = 1 up to the fold, and ind(uH) = 0 afterwards, and

on b2 ind(uH) decreases from 3 to 2 at the fold and to 1 near r = 7.2. Panel (c) illustrates the 2D

analogue of Fig. 3(c), i.e., the instability of the second Hopf branch and stability of the first.

(a) BD (b) solution snapshots (c) Instability of b2/pt10, conv. to b1

Figure 4: Example plots from cmds2d.m. (a) Bifurcation diagrams of the first 2 Hopf branches for (2.2)

in 2D. (b) Solution snapshot from b2/pt10, at t = 0, 3
10T,

6
10T,

9
10T . (c) Time integration starting from (b)

(t = 0), with convergence to the first Hopf branch.

13

2.5 3D

To illustrate that exactly the same setup also works in 3D, in cmds3d.m and Fig. 5 we consider (2.2)

over Ω = (−π, π)×(−π/2, π/2)×(−π/4, π/4). Here we use a very coarse tetrahedral mesh of np=2912

points, thus 5824 DoF in space. Analytically, the first 2 HBPs are r1=21/4 (k = (1/2, 1, 2)) and r2=6

(k = (1, 1, 2), but with the coarse mesh we numerically obtain r0=5.47 and r1=6.29. Again, this can

be greatly improved by, e.g., halving the spatial mesh width, but then the Hopf branches become very

expensive. Using m = 20, the computation of the branches (with 15 continuation steps each) in Fig. 5

takes about 10 minutes, and a call of floqap to a posteriori compute the Floquet multipliers about

50 seconds. Again, on b1, ind(uH)=1 up to fold and ind(uH)=0 afterwards, while on b2 ind(uH)

decreases from 3 to 2 at the fold and to 1 at the end of the branch, and time integration from an IC

from b2 yields convergence to a periodic solution from b1.

The script cmds2d.m follows the same principles as the 1D and 2D scripts. In 3D, the “slice plot”

in Fig. 5(b), indicated by p.plot.pstyle=1 should be used as a default setting, while the isolevels

in (c) (via p.plot.pstyle=2) often require some fine tuning. Additionally we provide a “face plot”

option p.plot.pstyle=3, which however is useless for Dirichlet BC.

(a) BD, ‖u‖∗ and T (b) Example slice plot

(c) Example isoplot

Figure 5: Example plots from cmds3d.m. (a) Bifurcation diagram of first 2 Hopf branches for (2.2) in 3D.

(b,c) Solution snapshots at t = 0 and t = T/2 for the blue dot in (a); slice-plot in (b), and isolevel plot in (c)

with levels 0.525m1 + 0.475m2 and 0.475m1 + 0.525m2, where m1 = minx,t u1(x, t) and m2 = maxx,t u1(x, t).

3 An extended Brusselator: Demo brussel

In [Uec19, §3.2] we consider an example with an interesting interplay between stationary patterns and

Hopf bifurcations, and where there are typically many eigenvalues with small real parts, such detecting

14

HBPs with bifcheck=2 without first using initeig for setting a guess for a shift ω1 is problematic.

The model, following [YDZE02] is an ’extended Brusselator’, namely the three component reaction–

diffusion system

∂tu = Du∆u+ f(u, v)− cu+ dw, ∂tv = Dv∆v + g(u, v), ∂tw = Dw∆w + cu− dw, (3.1)

where f(u, v) = a− (1 + b)u+ u2v, g(u, v) = bu− u2v, with kinetic parameters a, b, c, d and diffusion

constants Du, Dv, Dw. We consider (3.1) on rectangular domains in 1D and 2D, with homogeneous

Neumann BC for all three components. The system has the trivial spatially homogeneous steady state

Us = (u, v, w) := (a, b/a, ac/d),

and in suitable parameter regimes it shows co-dimension 2 points between Hopf, Turing–Hopf (aka

wave), and (stationary) Turing bifurcations from Us. A discussion of these instabilities of Us in the

a− b plane is given in [YDZE02] for fixed parameters

(c, d,Du, Dv, Dw) = (1, 1, 0.01, 0.1, 1). (3.2)

In our simulations we additionally fix a = 0.95, and take b as the primary bifurcation parameter.

For the quite rich bifurcation results, which include primary spatially homogeneous and patterned

Hopf bifurcations from U ≡ Us, and Turing bifurcations from Us followed by secondary Hopf bifurca-

tions, we refer to [Uec19, §3.2]. Regarding the implementation, Table 2 lists the scripts and functions

in brussel. Except for the additional component (N = 3 instead of N = 2) this is quite similar to

cgl, with one crucial difference, in particular in 2D, on which we focus in §3.2. First, however, we

shall focus on 1D and additional to [Uec19, §3.2] compute bifurcation lines in the a–b parameter plane

by branch point continuation and Hopf point continuation, and compute secondary bifurcations from

Hopf orbits.

Table 2: Scripts and functions in hopfdemos/brussel.

script/function purpose,remarks

bru1dcmds basic BDs for 1D, including some time integration.
bru1dcmds b extension of bru1dcmds, dealing with bifurcations from the primary Hopf orbit
bru2dcmds script for 2D, including preparatory step initeig for guessing iω for Hopf bifurca-

tions, and some time integration
cmdsHPc script for Hopf and branch point continuation to compute Fig. 6(a)
auxcmds1 1D auxiliaries, illustrating spatial mesh refinement on Turing branches
auxcmds2 2D auxiliaries: illustration of problems with many small real eigenvalues

e2rsbru elements to refine selector, interface to OOPDE’s equivalent of pdejmps
evalplot script for plotting eigenvalues for linearization around spat. homogeneous solution,

see [Uec19, Fig.7(b)].
bruinit initialization as usual
oosetfemops the FEM operator for (3.1), OOPDE setting
sG, sGjac, nodalf rhs, Jacobian, and nonlinearity, as usual
bpjac, hpjac computing (directional) second derivatives for BP and HP continuation

15

3.1 1D

Listing 10 shows the startup in 1D. We fix a = 0.95 and choose b as the continuation parameter,

starting at b = 2.75, over the domain Ω = (−lx, lx), lx = π/kTH , where kTH = 1.4 is chosen to have the

first bifurcation from Us to a Turing-Hopf (or wave) branch. This follows from, e.g., [YDZE02], see also

[Uec19], but also from the bifurcation lines and spectral plots in Fig. 6(a,b), which we explain below.

The ’standard’ files such as bruinit.m, oosetfemops.m, sG.m, and sGjac.m are really standard and

thus we refer to their sources. Moreover, regarding initeig in line 5 of bru1dcmds.m we refer to §3.2,

where this becomes crucial. The continuation in line 6 of bru1dcmds.m then yields the first three

bifurcations as predicted from Fig. 6(a,b), and subsequently further steady and Hopf bifurcations.

See Fig. 6(c) for the BD of these branches, and [Uec19, §3.4] for further discussion. Here we first

want to explain how Fig. 6(a) can be computed by Hopf point continuation (HPC) and branch point

continuation BPC, see Listing 11.

%% init , and cont of hom.steady branch

ndim =1; dir=’hom1d’; p=[]; lx=pi /1.4; nx =100;

par =[0.95; 2.75; 1; 1; 0.01; 0.1; 1]; % a, b, c, d, Du , Dv , Dw

p=bruinit(p,lx,nx,par ,ndim); p=setfn(p,dir); p.sw.bifcheck =2;

5 p=initeig(p,4); p.nc.neig=[5, 5]; % init omv (compute guesses for eval shifts)

p.sw.verb =2; p.nc.mu2=5e-3; p=cont(p,20);

Listing 10: brussel/bru1dcmds.m (first 6 lines). The initeig in line 5 is not strictly necessary in 1D,
but useful for speed. The remainder of bru1dcmds computes a number of steady and Hopf bifurcations from
hom1d, and some secondary Hopf bifurcations from Turing branches, and we refer to [Uec19] for the associated
BDs and solution plots.

%% HP and BP continuations , first the wave (Turing -Hopf) branch

p=hpcontini(’hom1d ’,’hpt1’,1,’hpc1’); huclean(p); p.sw.bprint =2;p.plot.bpcmp =2;

%[Ja,Jn]= hpjaccheck(p); pause % to check the correct impl. of hpjac

p.sol.ds= -0.01; p.nc.lammax =1.25; p.nc.lammin =0.8; p0=p; p=cont(p,20);

5 p=p0; p=setfn(p,’hpc1b ’); p.sol.ds=-p.sol.ds; p=cont(p,20); % other direction

%% check HP continuation

p=hpcontexit(’hpc1’,’pt5’,’t1’); % puts the HBP into dir ’t1’

p=hoswibra(’t1’,’hpt1’,ds,para ,’t1h’); p.nc.lammax =3.5; p=cont(p,5); % continue

%% BP-cont for Turing:

10 p=bpcontini(’hom1d ’,’bpt1’,1,’bpc1’); p.sw.bprint =2; p.plot.bpcmp =2;

p.sol.ds= -0.01; p.nc.lammin =0.8; p.nc.lammax =1.15; p0=p; p=cont(p,20);

p=p0; p=setfn(p,’bpc1b ’); p.sol.ds=-p.sol.ds; p=cont(p,20); % other direction

%% check BP continuation

p=bpcontexit(’bpc1’,’pt5’,’t2’); % puts the BP into dir ’t2’

15 p=swibra(’t2’,’bpt1’,’t2b’); p.nc.lammax =3.5; p=cont(p,5); % swibra and cont

Listing 11: brussel/bruHPCcmds.m (first 15 lines). The ideas of HP continuation and of BP continuation
are explained in §3.1.1 and [Uec20a], respectively.

16

3.1.1 Hopf point continuation

Similar to fold continuation and branch point continuation ([DRUW14] and [Uec20a, §3.4]), Hopf

point continuation (HPC) can be done via suitable extended systems. Here we use [Gov00, §4.3.2]

H(U) :=

G

Guφr + ωMφi

Guφi − ωMφr

cTφr − 1

cTφi

 = 0 ∈ R3nu+2, U = (u, φr, φi, ω, λ), (3.3)

where iω ∈ R is the desired eigenvalue of Gu, φ = φr + iφi ∈ Cnu an associated eigenvector, and

cr ∈ Rnu is a normalization vector. We thus have 3nu + 2 equations for the 3nu + 2 real unknowns U ,

and in [Gov00, Proposition 4.3.3] it is shown that (3.3) is regular at a simple Hopf bifurcation point.

Thus, (3.3) can be used for localization of (simple) Hopf points (implemented in the pde2path

function hploc) if a sufficiently good initial guess U is given, and, moreover, freeing a second parameter

w we can use the extended system

H(U,w) =

(
H(U,w)

p(U,w, ds)

)
=

(
0

0

)
∈ R(3nu+2)+1 (3.4)

for HPC, where p(U,w, ds) is the standard arclength condition, with suitable weights for the param-

eters λ,w. This requires the Jacobian

∂UH(U) =

Gu 0 0 0 Gλ

∂u(Guφr) Gu ωM Mφi ∂λ(Guφr)

∂u(Guφi) −ωM Gu −Mφr ∂λ(Guφi)

0 cT 0 0 0

0 0 cT 0 0

 ∈ R(3nu+2)×(3nu+2). (3.5)

Here, Gu is already available, the ∂λ· expressions are cheap from finite differences, as well as the w

derivatives needed in the arclength continuation, and expressions such as ωM are easy. Thus the main

task is to compute the directional 2nd derivatives(
∂u(Guφr)

∂u(Guφr)

)
∈ R2nu×nu . (3.6)

This can be done numerically, but this may be expensive, and for semilinear problems G(u) = Ku−
Mf(u) it is typically easy to write a function hpjac (or with some other problem specific name name)

which returns (3.6), and which should be registered as p.fuha.spjac=@hpjac (or p.fuha.spjac=@name).

For instance, for N = 2 components and φr = (φ1, φ2) we have

∂u(Guφr) = −M∂u

(
f1,u1φ1+f1,u2φ2

f2,u1φ1+f2,u2φ2

)
= −M

(
f1,u1u1φ1+f1,u2u1φ2 f1,u1u2φ1+f1,u2u2φ2

f2,u1u1φ1+f2,u2u1φ2 f2,u1u2φ1+f2,u2u2φ2

)
, (3.7)

and we obtain the same expression for ∂u(Guφi) with φi = (φ1, φ2). Accordingly, brussel/hpjac.m

17

returns

(
∂u(Guφr)

∂u(Guφr)

)
for the three component semilinear system (3.1). For general testing we also

provide the function hpjaccheck, which checks p.fuha.hpjac against finite differences.

To initialize HPC, the user can call p=hpcontini(’hom1d’,’hpt1’,1,’hpc1’), see line 2 of Listing

11, where the third argument gives the new free parameter w. Here w = a, which is at position 1

in the parameter vector. This triples p.nu and sets a number of further switches, for instance for

automatically taking care of the structure of ∂UH(U) in (3.5). For convenience hpcontini also

directly sets p.fuha.spjac=@hpjac, which of course the user can reset afterwards. Then calling cont

will continue (3.4) in w, and thus we produce the ’wave’ and ’Hopf’ lines in Fig. 6(a). Use hpcontexit

to return to ’normal’ continuation (in the original primary parameter).

Similarly, BPC is based on the extended system [Mei00, §3.3.2]

H(U) =

G(u, λ) + µMψ

GT
u (u,w)ψ

‖ψ‖2
2 − 1

〈ψ,Gλ(u,w)〉

 = 0 ∈ R2nu+2, U = (u, ψ, w), (3.8)

where (u, λ) is a (simple) BP (for the continuation in λ), ψ is an adjoint kernel vector, w = (λ, µ)

with w1 = λ the primary active parameter and w2 = µ as additional active parameter. The BPC

requires the Jacobian ∂UH of which ∂u(G
T
uψ) is potentially difficult to implement. However, again for

semilinear problems ∂u(G
T
uψ) has a similar structure as (3.7), see [Uec20a, §3.4] for further details.

In particular, for (3.1) it can be implemented rather easily, see bpjac.m. The actual BPC is then

initialized by calling bpcontini, see line 11 of Listing 11, and the BPC produces the ’Turing line’ in

Fig. 6(a). Using bpcontexit returns to ’normal’ continuation.

(a) Bifurcation lines in the a–b plane (b) spectral plots (c) BD (from [Uec19, Fig.7])

0.8 0.9 1 1.1

a

2.4

2.6

2.8

3

3.2

b

wave

Hopf

Turing

2.8 2.9 3

b

3

3.2

3.4

3.6

3.8

||u
||

*

10

5

10

5

10

h1

h2

h3

s1

s1h1

Figure 6: Results for (3.1), from cmdsHPc.m (a), evalplot.m (b), and bru1dcmds.m (c). (a) Bifurcation lines

as obtained from branch point (Turing–line) and Hopf point (Hopf and wave line) continuation. Compare

[Uec19, Fig.7a] or [YDZE02]. (b) Spectrum of the linearization of (3.1) around Us, a = 0.95 fixed. The dots

on the real part show the admissible wave numbers on the subsequently used 1D domain. (c) Bifurcation

diagram of Hopf and Turing branches; see also [Uec19, Fig.7] for the associated solution plots.

18

3.1.2 Bifurcations from the first Hopf branch

As a second extension of what is presented for (3.1) in [Uec19, §3.3] we give some results on bifurcations

from the first Hopf branch h1 in Fig. 6(c), associated to Floquet multipliers going through 1.(Of course,

a critical multiplier also goes through 1 for a periodic orbit fold as, e.g., for the cGL in §2, but here

we are interested in genuine bifurcations.) The used method is described in Appendix A.2, together

with the case of period doubling bifurcations associated to Floquet multipliers going through −1.

Remark 3.1. Our methods are somewhat preliminary in the following sense:

(a) The localization of the branch points uses a simple bisection based on the change of ind(uH),

cf. (2.5), as a multiplier crosses the unit circle. Such bisections work well and robustly for bifurcations

from steady branches (and can always be improved to high accuracy using the above extended systems

for BPs and HPs), but the bisection for critical multipliers is often more difficult (i.e., less accurate)

due to many multipliers γj close to the unit circle, and also often due to sensitive dependence of the

γj on the continuation parameter λ, and, moreover, on the numerical time discretization fineness.

Typically, some trial and error is needed here.

(b) The computation of predictors for branch switching is currently based on the classical monodromy

matrixM, see (A.17) and (A.18). As explained in, e.g., [Lus01], see also [Uec19] and §4, this may be

unstable numerically, in particular for non–dissipative problems. The multiplier computations should

then be based on the periodic QZ-Schur algorithm (FA2 algorithm in pde2path, see also §4), but for

the branch switching predictor computations this has not been implemented yet. c

Despite Remark 3.1, for ’nice’ problems the branch–switching seems to be robust enough. Figure 6

shows some results from bru1dcmds b, and Listing 12 shows the basic commands. In line 2 we reload

a point from the first Hopf branch and set p.hopf.bisec which determines how many bisections

are done to localize a BP after the detection of an index change. Here (and in other problems)

p.hopf.bisec=5 seems a reasonable value. We then continue further and find the two BPs on 1dh1

indicated in Fig. 6 where the red and magenta branches bifurcate. The branch switching is done in

lines 4-8. Typically this requires a rather large ds (all this of course depends on scaling), and often

one step with a large residual tolerance is needed to get on the bifurcating branch (which indicates

that the predictor is not very accurate). However, once on the bifurcating branch, p.nc.tol can and

should be decreased again. The same strategy is used for the second (magenta) bifurcating branch.

%% reload point from 1dh1 and run with more bisectionss

p=loadp(’1dh1’,’pt10’,’1dh1b’); p.hopf.bisec =8; huclean(p); p=cont(p,20);

%% bifurcations FROM 1dh1

ds=0.5; aux.sw=1; p=poswibra(’1dh1b’,’bpt1’,’t1’,ds ,aux);

5 p.sw.bifcheck =0; p.hopf.fltol =1e-2; % increase fl-tol due to large amplitude

p.nc.tol=1e-3; p=cont(p,1); % do 1 step with large tol to get on bif.branch

p.nc.tol=1e-8; p=cont(p,19); % decrease tol and continue further

Listing 12: brussel/bru1dcmds b.m (first 7 lines). The remainder computes the 2nd bifurcating branch and
deals with plotting.

3.2 2D

We close the discussion of (3.1) with some comments on the continuation of solution branches in

2D. See [Uec19, Fig.10] for example results, where we consider (3.1) on Ω=(−π/2, π/2)×(−π/8, π/8).

Already on this rather small domain the linearization of (3.1) around Us has many small real eigen-

values. Therefore, the Hopf eigenvalues (with imaginary parts near ω1 = 1) are impossible to detect

by computing just a few eigenvalues close to 0, as illustrated in Fig. 8(a,b). Thus, the preparatory

19

(a) BD of secondary bifurcations

from the first Hopf branch

(b) Solution and Floquet plots at first two BPs and on the red

branch

2.8 3 3.2 3.4

b

3

3.5

4

4.5

5

||
u

||

10

20

30

40

-0.5 0 0.5 1

-0.5

0

0.5

j
 at 1dh1/bpt1

0 1

-0.5

0

0.5

j
 at 1dh1/bpt2

-0.5 0 0.5 1

-0.5

0

0.5

j
 at t1/pt10

(c) solutions and multipliers on the magenta branch

-0.5 0 0.5 1

-0.5

0

0.5

j
 at t2/pt20

-0.5 0 0.5 1

-0.5

0

0.5

j
 at t2/pt30

-0.5 0 0.5 1

-0.5

0

0.5

j
 at t2/pt40

Figure 7: Results for (3.1) from bru1dcmds b.m. (a) Bifurcation diagram, extenting Fig. 6(c) by the sec-

ondary pitchfork bifurcations from the primary Hopf branch (orange); first PD branch t1 in red, second PD

branch t2 in magenta. (b,c) solution and Floquet plots. The magenta branch intermediately has index 3,

before for increasing b first two unstable multipliers come back inside the unit circle via a Neimark-Sacker

scenario, and then the last unstable γ goes through 1 and the orbit gains stability near b = 3.3.

step initeig already used in 1D in line 5 of Listing 10 becomes vital. This uses a Schur complement

algorithm to compute a guess for the spectral shift ω1 near which we expect Hopf eigenvalues during

the continuation of a steady branch, see [Uec19, §2.1 and Fig.8] for illustration.

%% C1: init hom branch , with INITEIG , then use cont to find bifurcations

Du =0.01; Dv=0.1; Dw=1; c=1; d=1; a=0.95; b=2.75; lx=pi/2;

ndim =2; dir=’hom2d’; p=[]; nx=60; par=[a b c d Du Dv Dw];

p=bruinit(p,lx,nx,par ,ndim); p=setfn(p,dir); p.sw.spcalc =0; p.nc.mu2 =0.5e-2;

5 p=initeig(p,4); p.nc.neig=[3, 3]; % init omv (compute guesses for eval shifts)

p.sw.bifcheck =2; p=cont(p,30); % cont with just 3 evals near 0 and near om1

Listing 13: brussel/bru2dcmds.m (first Cell, i.e., initialization). The main issue is the preparatory step in
line 6. This produces a (here quite accurate) guess 0.9375 for the candidate ω for imaginary parts at Hopf
bifurcations, which, together with ω0 = 0, is put into p.nc.eigref. The remainder of brucmds2.m then
continues the homogeneous branch and some bifurcating Hopf and Turing branches, including secondary
bifurcations from the Turing branch to ’spotted’ Hopf branches. Here, an adaptive spatial mesh refinement
is helpful to increase accuracy.

function [p,idx]= e2rsbru(p,u) % elements2refine selector as in pdejmps

E=zeros(1,p.pdeo.grid.nElements); par=u(p.nu+1:end); f=nodalf(p,u); a=0;

for i=1:1 % loop over the three components

ci=par (4+i); fi=f((i-1)*p.np+1:i*p.np); ui=u((i-1)*p.np+1:i*p.np);

20

(a) neig = 200 (b) neig = 300 (c) |g| from [Uec19, (2.11)] (d)
neig = (3, 3) with

ω1 = 0.9375

Figure 8: (a,b) neig smallest eigenvalues of the linearization of (3.1) around Us at b = 2.75, remaining

parameters from (3.2); HD1 with neig = 200 will not detect any Hopf points. (c) (??) yields a guess

ω1 = 0.9375 for the ω value at Hopf bifurcation, and then HD2 with neig = (3, 3) is reliable and fast: (d)

shows the three eigenvalues closest to 0 in blue, and the three eigenvalues closest to iω1 in red.

5 E=E+p.pdeo.errorInd(ui,ci,a,fi); % sum up componentwise error -est.

end

p.sol.err=max(max(E));

idx=p.pdeo.selectElements2Refine(E,p.nc.sig); % select triangles to refine

Listing 14: brussel/e2rsbru.m. For a general discussion of error estimators in the OOPDE setting we refer
to [RU19]. The only difference is that here we have a 3 component system, and thus we sum up the element
wise errors over the components.

As indicated in the caption of Listing 13, at the start of the (1D and 2D) Turing branches we do

some adaptive mesh–refinement. The used error estimator is given in Listing 14. The further BPs and

HBPs then obtained are very close to the BPs and HBPs on the coarser mesh, but the resolution of

the bifurcating Hopf branches becomes considerably better, with a moderate increase of computation

time, which in any case is faster than starting with a uniform spatial mesh yielding a comparable

accuracy.

4 A canonical system from optimal control: Demo pollution

In [Uec16, GU17], pde2path has been used to study infinite time horizon distributed optimal control

(OC) problems, see also [dWU19] for a tutorial on OC computations with pde2path. As an example

for such problems with Hopf bifurcations5 we consider, following [Wir00], a model in which the states

v1 = v1(t, x) and v2 = v2(t, x) are the emissions of some firms and the pollution stock, and the control

k = k(t, x) models the abatement policy of the firms. The objective is to maximize

J(v0(·), k(·, ·)) :=

∫ ∞
0

e−ρtJca(v(t), k(t)) dt, (4.1a)

where Jca(v(·, t), k(·, t)) =
1

|Ω|

∫
Ω

Jc(v(x, t), k(x, t)) dx is the spatially averaged current value function,

with local current value Jc(v, k) = pv1 − βv2 − C(k), C(k) = k + 1
2γ
k2, where ρ > 0 is the discount

rate. Using Pontryagin’s Maximum Principle, the so called canonical system for the states v and co-

states (or Lagrange multipliers or shadow prices) λ can be formally derived as a first order necessary

5which so far could not be found in the systems studied in [Uec16, GU17]

21

optimality condition, using the intertemporal transversality condition

lim
t→∞

e−ρt
∫

Ω

〈v, λ〉 dx = 0. (4.2)

The canonical system reads

∂tv = D∆v + f1(v, k), v|t=0 = v0, (4.3a)

∂tλ = −D∆λ+ f2(v, k), (4.3b)

where f1(v, k) = (−k, v1−α(v2))T , f2(v, k) = (ρλ1− p− λ2, (ρ+α′(v2))λ2 + β)T , ∂nλ = 0 on ∂Ω, and

where the control k is given by

k = k(λ1) = −(1 + λ1)/γ. (4.3c)

For convenience we set u(t, ·) := (v(t, ·), λ(t, ·)) : Ω→ R4, and write (4.3) as

∂tu = −G(u) := D∆u+ f(u), (4.4)

where D =diag(d1, d2,−d1,−d2), f(u) =

(
−k, v1− α(v2), ρλ1− p− λ2, (ρ+ α′(v2))λ2 + β

)T
. Besides

the boundary condition ∂nu = 0 on ∂Ω we have the initial condition v|t=0 = v0 (only) for the states.

A solution u of the canonical system (4.4) is called a canonical path, and a steady state of (4.4) (which

automatically fulfills (4.2)) is called a canonical steady state (CSS). Due to the backward diffusion in

λ, and since we only have initial data for half the variables, (4.4) is not well posed as an initial value

problem. Thus, one method for OC problems of type (4.1) is to first study CSS, and then canonical

paths connecting some initial states to some CSS u∗. This requires the so-called saddle-point property

for u∗, and if this holds, then canonical paths to u∗ can often be obtained from a continuation process

in the initial states, see [dWU19].

A natural next step is to search for time–periodic solutions uH of canonical systems, which obvi-

ously also fulfill (4.2). The natural generalization of the saddle point property is that

d(uH) := ind(uH)− nu
2

= 0, (4.5)

i.e., that exactly half of the Floquet multipliers are in the unit circle. In the (low–dimensional) ODE

case, there then exist methods to compute connecting orbits to (saddle type) periodic orbits uH with

d(uH) = 0, see [BPS01, GCF+08], which require comprehensive information on the Floquet multipliers

and the associated eigenspace of uH . A future aim is to extend these methods to periodic orbits of

PDE OC systems.

However, in [Uec19, §3.4] we only illustrate that Hopf orbits can appear as candidates for optimal

solutions in OC problems of the form (4.1), and that the computation of Floquet multipliers via the

periodic Schur decomposition floqps can yield reasonable results, even when computation via floq

completely fails.

For all parameter values, (4.4) has an explicit spatially homogeneous CSS, see [Uec19], and by

a suitable choice of parameters we obtain Hopf bifurcations to spatially homogeneous and spatially

patterned time periodic orbits. Concerning the implementation, Table 3 gives an overview of the

involved scripts and functions. Since we again use the OOPDE setting, and since we restrict to 1D,

22

although (4.4) is a four component system, much of this is very similar to the cgl demo in 1D, with

the exceptions that: (a) we also need to implement the objective value and other OC related features;

(b) similar to brussel it is useful to prepare the detection of HBPs via initeig; (c) we need to use

flcheck=2 throughout. Thus, in Listings 15-17 we comment on these points, and for plots illustrating

the results of running pollcmds.m refer to [Uec19, §3.4].

Table 3: Main scripts and functions in hopfdemos/pollution.

script/function purpose,remarks

pollcmds main script
p=pollinit(p,lx,nx,par) init function
p=oosetfemops(p) set FEM matrices (stiffness K and mass M)
r=pollsG(p,u) encodes G from (4.4); we avoid implementing the Jacobian here and instead

use p.sw.jac=1

f=nodalf(p,u) nonlinearity, called in sG.
jc=polljcf(p,u) the (current value) objective function

function p=pollinit(p,lx,nx,par) % init -routine for pollution demo

p=stanparam(p); p.nc.neq=4; p.sw.jac=0; % numerical Jac

p.fuha.sG=@pollsG; p.fuha.jcf=@polljcf; % rhs , objective value ,

p.fuha.outfu=@pollbra; % customized output (including objective function(s))

Listing 15: pollution/pollinit.m (first 4 lines). Additional to the rhs, in line 3 we set a function handle
to the objective value, as usual for OC problems (see [dWU19]). Similarly, in line 4 we set p.fuha.outfu to a
customized branch output, which combines features from the standard Hopf output hobra and the standard
OC output ocbra. We do not set p.fuha.sGjac since for convenience here we use numerical Jacobians
(p.sw.jac=0 in line 1). The remainder of pollinit.m is as usual.

function jc=polljcf(p,u) % current value for pollution

par=u(p.nu+1:end); pr=par(2); vp=par(3); ga=par(5);

y=u(1:p.np); z=u(p.np+1:2*p.np);l1=u(2*p.np+1:3*p.np); % extract soln -components

k=-(1+l1)/ga; c=k+ga*k.^2/2; jc=pr*y-vp*z-c; % compute k, then J

Listing 16: pollution/polljcf.m, function to compute the current objective value. Called in pollbra to
put the value on the branch (for plotting and other post-processing).

%% script for Hopf bif in pollution model Wirl2000 , here with diffusion

close all; keep pphome

%% C1: init and continue trivial branch

p=[]; lx=pi/2; nx=40; par =[0.5 1 0.2 0 300]; % [del , pr, beta , a, ga];

5 p=pollinit(p,lx,nx,par); p=setfn(p,’FSS’); screenlayout(p); p.file.smod =2;

p=initwn(p,2,1); p=initeig(p); p.nc.neig =[5 5]; % find guess for omega_1

p.sw.bifcheck =2; p.sw.verb =2; p.nc.mu2=1e-3; % accuracy of Hopf detection

p.nc.ilam =1; p.sol.ds =0.01; p.nc.dsmax =0.01; p=cont(p,20); % cont of FSS

%% C2: cont of Hopf branches

10 para =4; ds =0.5; dsmax =1; xi=1e-2; figure (2); clf; aux =[]; aux.tl=25;

for j=1:2

switch j

case 1; p=hoswibra(’FSS’,’hpt1’,ds ,para ,’h1’,aux); nsteps =15;

case 2; p=hoswibra(’FSS’,’hpt2’,ds ,para ,’h2’,aux); nsteps =25;

15 end

p.hopf.xi=xi; p.hopf.jac=1; p.nc.dsmax=dsmax; p.hopf.y0dsw =0;

p.file.smod =1; p.hopf.flcheck =2; % use floqps for multipliers

p.usrlam =[0.5 0.6 0.7]; tic; p=cont(p,nsteps); toc

23

end

Listing 17: pollution/pollcmds.m (first 19 lines). In cell 1 we use initeig to generate a guess for iω1

(the Hopf wave number), and set neig to compute 5 eigenvalues near 0 and near ω1. For the computation of
multipliers here we need to use floqps, see line 17. The remainder of pollcmds deals with plotting.

5 Hopf bifurcation with symmetries

If the PDE (1.1) has (continuous) symmetries, then already for the reliable continuation of steady

states it is often necessary to augment (1.1) by nQ suitable phase conditions, in the form

Q(u, λ, w) = 0 ∈ RnQ (5.1)

where w ∈ RnQ stands for the required nQ additional active parameters, see [RU17] for a review. For

instance, if (1.1) is spatially homogeneous and we consider periodic BC, then we have a translational

invariance, and (in 1D) typically augment (1.1) by the phase condition

〈∂xu∗, u〉 = 0 ∈ R, (5.2)

where (for scalar u, v) 〈u, v〉 =
∫

Ω
uv dx, and where u∗ is either a fixed reference profile or the solution

from the previous continuation step. We thus have nQ = 1 additional equations, and consequently

must free 1 additional parameter.

Similarly, we must add phase conditions to the computation of Hopf orbits (additional to the phase

condition (A.6) fixing the translational invariance in t). This is in general not straightforward, since

(5.1), with (5.2) as an example, is not of the form ∂tu = Q(u, λ) and thus cannot simply be appended

to (1.1). Instead, the steady phase conditions (5.1) must be suitably modified and explicitly appended

to the Hopf system, see (A.9). Examples for the case (5.2) have been discussed in [RU17, §4], namely

the cases of modulated fronts, and of breathers.

Here we give two more examples, and extend the breather example to compute period doubling

bifurcations. The first example deals with Hopf orbits in a reaction diffusion system with mass

conservation, and the second with Hopf orbits in the Kuramoto-Sivashinsky (KS) equation, where

we need two phase conditions, one for mass conservation and one to fix the translational invariance.

For both problems we restrict to 1D; like, e.g., the cGL equation, they both can immediately be

transferred to 2D (where for the KS equation we need a third phase condition q3(u) = 〈∂yu∗, u〉 = 0,

cf. (5.9c)), but the solution spaces and bifurcations then quickly become “too rich”, such that – as

often – 2D setups only make sense if there are specific questions to be asked.

5.1 Mass conservation: Demo mass-cons

As a toy problem for mass conservation in a reaction diffusion system we consider

∂tu1 = ∆u1 + d2∆u2 + f(u1, u2), ∂tu2 = ∆u2 − f(u1, u2), in Ω, (5.3)

f(u1, u2) = αu1 − u3
1 + βu1u2, with parameters d2, α, β ∈ R, and homogeneous Neumann BC. Then

m := 1
|Ω|

∫
u + v dx is conserved since d

dt

∫
Ω

(u + v) dx =
∫
∂Ω
∂nu1 + (1 + d2)∂nu2 dS = 0. Given a

steady state (u, v) for some fixed α, β, this always comes in a continuous family parameterized by the

24

“hidden” parameter m. Thus, to study steady states and their bifurcations we use the mass constraint

Q(u, λ) :=
1

|Ω|

∫
u+ v dx−m = 0, (5.4)

where as usual λ stands for the vector of all parameters. Given this additional equation, we have the

differential-algebraic system

Mu̇ = −G(u, λ), Q(u, λ) = 0, (5.5)

and to compute solution branches we need 2 parameters, which we choose as α, β. If we restrict

to m = 0, then we have two explicit branches of homogeneous solutions, namely u2 = −u1 and

u1= − β
2
±
√

β2

4
+ α. We choose the initial point (α, β)=(1, 1), u1 = −1/2 −

√
5/4, u2 = −u1 and

continue in α.

As a Hopf version of (5.4) we use

QH(u(·, ·)) :=
m∑
i=1

(∫
Ω

(u1(ti, x) + u2(ti, x)) dx−m
)

!
= 0, (5.6)

see Listings 19 and 20. In (5.6) i.e., we require the average (in t) mass to be conserved. Theoretically

it would be sufficient to require
∫

Ω
(u1(t0, x) +u2(t0, x)) dx−m = 0, but it turns out that (5.6) is more

robust numerically, and that also with (5.6) we have

∣∣∣∣∫
Ω

(u1(ti, x) + u2(ti, x)) dx−m
∣∣∣∣ ≤ tol for all i,

i.e., pointwise in t.

The implementation of (5.5) is rather straightforward, see Table 4 for an overview, and Listings

18–20. We fix d2 = 10 and restrict to 1D, namely Ω = (−π, π). Figure 9(b) shows a basic bifurcation

diagram, with various quantities as functions of α. The continuation of (5.5) in α with fixed m = 0

yields that the homogeneous solution u stays fixed, i.e., u1 = −1/2 −
√

5/4, u2 = −u1 for all α, and

that only β is adjusted, see the black lines in (b). (c) shows a number of Hopf orbits, where on each

orbit we have |Q(u(t, ·)| < 10−8 (see also the last plot in (a) for the average QH), where the tolerance

for the Hopf orbits is 10−6. These Hopf orbits are all unstable according to the associated Floquet

multipliers, see also Fig. 10(a), and thus it is interesting to see the evolution of solutions starting on

a Hopf orbit (with the numerical error acting as a perturbation of the true point on a Hopf orbit). In

Fig. 10(b) we exemplarily show this for the case of u(0) from h3/pt15; here, as in all other cases we

considered, the time evolution converges to another stable spatially homogeneous steady state. From

this we may again start continuation in, e.g., α and β, and find that this branch again typically shows

some Hopf bifurcations.

Table 4: Scripts and functions in hopfdemos/mass-cons.

script/function purpose,remarks

cmds1d main script
mcinit, oosetfemops, sG, sGjac, nodalf initialization, FEMops, rhs, Jac., and nonlinearity, as usual.
qf, qfjac the phase condition (5.4), and its Jacobian.
qfh, qfhjac the Hopf version (5.6) of (5.4), and its Jacobian.

function q=qf(p,u) % mass constraint int u1+u2 dx=0

M=p.mat.M(1:p.np ,1:p.np); par=u(p.nu+1:end); m=par(4);

25

(a) BDs, parameter β,min(u1),max(u2 and mass as functions of α.

−10 −5

3

4

5

6

7

8

α

β

15

20

15

−10 −5

−2.6

−2.4

−2.2

−2

−1.8

α

m
in

(u
1)

15

20

15

−10 −5

1.8

2

2.2

2.4

2.6

α

m
ax

(u
2)

15

20
15

−10 −5

0

2

4

6

x 10
−9

α

m
a

s
s

15

2015

(c) Selected solution plots (both components for h1/pt15)

Figure 9: Continuation in α for (5.5) with m = 0. (a) Branch data on the homogeneous branch (black) and

on three Hopf branches h1 (blue), h2 (red), and h3 (magenta). (b) Example solution plots.

u1=u(1:p.np); u2=u(p.np +1:2*p.np); q=sum(M*(u1+u2))/p.vol -m;

Listing 18: mass-cons/qf.m; mass constraint for steady state computations.

function q=qfh(p,y) % aux eqns in Hopf , here: mass constraint

M=p.mat.M(1:p.np ,1:p.np); par=p.u(p.nu+1:end); m=par(4); q=0;

for i=1:p.hopf.tl; % sum up masses , i.e., conserve m on average

u1=y(1:p.np,i); u2=y(p.np +1:2*p.np ,i); q=q+sum(M*(u1+u2))/p.vol -m;

5 end

Listing 19: mass-cons/qfh.m; Hopf setting of mass constraint. The summing up (in t) of the masses turns
out to be more robust, with the mass-constraint actually fulfilled pointwise (in t).

function qjac=qfhjac(p,y) % u-derivatives of qfh

qjac=zeros(1,p.hopf.tl*p.nu); j=p.mat.M(1:p.np ,1:p.np)*ones(p.np ,1)/p.vol;

for i=1:p.hopf.tl; % same derivative at each time slice

qjac((i-1)*p.nu+1:i*p.nu)=([j; j]) ’;

5 end

Listing 20: mass-cons/qfhder.m, u–derivatives of QH , cf. last line of (A.10), where the parameter derivatives
are done automatically via finite differences.

%% C1: init , and continuation of hom branch

ndim =1; dir=’hom1d’; p=[]; lx=pi; nx =100; % domain size and spat.resolution

par =[1; 10; 0; 0; 1; 1]; % d1 d2 d3 m a1 b1

p=mcinit(p,lx,nx,par ,ndim); p=setfn(p,dir); % initialization

5 p.nc.nq=1; p.fuha.qf=@qf; % 1 steady constraint (mass), and its func.handle

p.sw.qjac =1; p.fuha.qfder=@qfjac; % use analytical jac for q, and func.handle

p.nc.xiq =0.1; p.nc.ilam =[5 6]; % weight of constr. in arclength , active vars

p=cont(p,20); % run the continuation

%% C2: hopf with constraints , passed to hoswibra via aux vars in aux

10 para =4; ds =0.005; aux =[]; aux.dlam =0; aux.nqnew =0; aux.tl=50;

26

(a) Floquet multipliers for h1/pt15

0 2 4 6 8 10 12 14

-0.5

0

0.5

(b) Time evolution of small perturbation of u from h1/pt15 at t = 0, left u1, right u2

Figure 10: (a) Instability of h1/pt15 as seen in its Floquet multipliers. (b) time integration, with convergence

to another spatially homogeneous steady state.

aux.xif =50; aux.pcfac =10; % weight factors , see hostanparam

aux.nqh=1; aux.qfh=@qfh; aux.qfhder=@qfhjac; % func.handles to hopf contraints

for i=1:3; % continue for 15 steps , first three with large tol

p=hoswibra(’hom1d ’,[’hpt’ mat2str(i)],ds,para ,[’h’ mat2str(i)],aux);

15 p.nc.ilam =5; p.hopf.ilam =6; p.sw.verb =0; p.hopf.sec=1; p.nc.dsmax =0.5;

p.file.smod =5; p.nc.tol=1e-2; p=cont(p,3); p.nc.tol=1e-4; p=cont(p,12);

end

%% C3: time integrate from some point on Hopf orbit , preparations

p=loadp(’h2’,’pt15’); p.u(1:p.nu)=p.hopf.y(1:p.nu ,1); % load Hopf point , and

%% C6: continue from result of tint; again hopf for decreasing alpha

plotsol(p); p.sol.restart =1; p.sol.ds=-0.1; p.sw.para =2; % reset settings to

% steady case , in particular restore scalar stiffness matrix (-Laplacian)

p.mat.K=Ks; p=rmfield(p,’hopf’); p=setfn(p,’hom1d2 ’); p=resetc(p);

5 p.nc.nq=1; p.nc.ilam =[5 6]; p.fuha.headfu=@stanheadfu; p.fuha.ufu=@stanufu;

p=cont(p,10);

Listing 21: mass-cons/cmds1d.m (with some omissions) C1 continues the homogeneous branch, giving a
number of Hopf bifurcations; here u1 = −(1 +

√
5)/2 and u2 = −u1 stay fixed, and only β varies with α.

In C2 we follow the first three Hopf branches, where we replace the stationary Hopf constraint in qf by the
Hopf version qfh, see Fig. 9 for bifurcation diagrams and example Hopf solutions. All Hopf branches turn out
to be unstable (from the Floquet multipliers), and thus in C3-5 we exemplarily look into the time evolution
from the first point (t = 0) on the Hopf orbit h1/pt15. This converges to a (stable) homogeneous solution
again, but at larger amplitude. Finally in C6 we use this as a starting point for continuation in α, and again
find a number of Hopf bifurcations for decreasing α.

5.2 Mass and phase constraints: Demos kspbc4 and kspbc2

The Kuramoto-Sivashinsky (KS) equation [KT76, Siv77] is a canonical and much studies model for

long–wave instabilities in dissipative systems, for instance in laminar flame propagation, or for surface

instabilities of thin liquid films. Here we consider the KS equation in the form

∂tu = −α∂4
xu− ∂2

xu−
1

2
∂x(u

2), (5.7)

27

with parameter α > 0, on the 1D domain x ∈ (−2, 2) with periodic BC. (5.7) is thus translationally

invariant, and has the boost invariance u(x, t) 7→ u(x− ct) + c, and we need two phase conditions,

1

|Ω|

∫
Ω

u dx = m, fixing the mass m, (5.8a)

〈∂xu∗, u− u∗〉 = 0, fixing the translational invariance. (5.8b)

Here fixing m = 0, (5.7) shows bifurcations from the trivial solution u ≡ 0 to stationary spatially

periodic solutions at αk =

(
2

kπ

)2

, k ∈ N. Next, for decreasing α we obtain secondary Hopf bi-

furcations from some branches of steady patterns, and for α → 0 the dynamics become more and

more complicated, making (5.7) a model for turbulence. In [BvVF17], a fairly complete bifurcation

diagram (with α in the range 0.025 to 0.4) has been obtained for (5.7) on Ω = (0, 2) with Dirichlet

BC, i.e., u(0, t) = u(2, t) = ∂2
xu(0, t) = ∂2

xu(2, t) = 0, where in particular many bifurcations have been

explained analytically as hidden symmetries by extending solutions antisymmetrically to the domain

(−2, 2) with periodic BC.

Here we directly study (5.7) in this setting, giving us the opportunity to also explain how to setup

4th order equations and periodic BC in pde2path. For the latter we only need to call p=box2per(p,1),

which generates matrices fill and drop which are used to transform the FEM matrices such as M and

K to the periodic setting, see [DU17]. In order to implement 4th order equations there are basically

two options:

(i) Since −∂2
xu = M−1Ku in the FEM sense, (5.7) can be written in the pde2path FEM setting as

M∂tu = −αKM−1Ku + Ku − 1
2
Kx(u

2). For pBC, K,M commute, and thus we can multiply

by M to obtain M2∂tu = −αK2u + MKu − 1
2
MKx(u

2). Then letting M0=M and redefining

M=M2 we obtain M∂tu=− αK2u+M0Ku−M0Kx(u
2). To incorporate the phase conditions

(5.8) we introduce the parameters s for phase-conservation and ε for mass conservation, and

thus ultimately consider the system

Mu̇ = −αK2u+M0Ku−
1

2
M0Kx(u

2) + sKxu+ ε, (5.9a)

0 = q1(u) :=
1

|Ω|

nu∑
i=1

(M0u)i −m, (5.9b)

0 = q2(u) := 〈∂xu∗, u− u∗〉 , (5.9c)

where 1
|Ω|
∑nu

i=1(M0u)i is the (Riemann sum) approximation of 1
|Ω|

∫
Ω
u dx, and u∗ is a suitable

reference profile. This set up is implemented in kspbc4, see below.

(ii) Alternatively we can rewrite the 4th order equation as a 2 component 2nd order system, for

instance for (5.7) in the form

∂tu = −α∂2
xv − ∂2

xu−
1

2
∂x(u

2), 0 = −∂2
xu+ v. (5.10)

By exploiting the mass matrix on the lhs of (1.3), (5.10) can be straightforwardly implemented

28

in pde2path in the form

MU̇=−G(U), U=

(
u1

u2

)
, M=

(
M 0

0 0

)
, G(U)=−

(
K αK

K M

)
U+

(
1
2
Kx(u

2
1)

0

)
, (5.11)

where M,K and Kx are the scalar mass, stiffness and advection matrices. Importantly, the

spectral picture and time evolution for (5.11) are still fully equivalent to (5.7). Adding phase

conditions like (5.9b,c), this is implemented in kspbc2, and yields the same results as the kspbc4

set up, except for small differences wrt to Floquet multipliers, which in any case are somewhat

delicate for constrained Hopf orbits, see Remark A.1.

The implementation of (5.9) is rather straightforward. See Table 5 for an overview, Listings

5.2–24 for pertinent sections from oosetfemops, cmds1d, sG, qf and qfh, while for cmds2.m and

Jacobians/derivatives of sG, qf and qfh we refer to the m-files sGjac, qjac and qfhjac, respectively.

Table 5: Scripts and functions in hopfdemos/kspbc4.

script/function purpose,remarks

cmds1 main script, steady state branches, and associated Hopf bifurcations of standing waves
cmds2 script for one traveling wave branch, and associated Hopf bifurcations of modulated

traveling waves
ksinit, oosetfemops initialization and FEMops; this is somewhat different from the other examples. ksinit

also contains the call p=box2per(p,1) to set up the periodic BC; oosetfemops con-
tains calls of filltrafo, and specifically the redefinition of M as M2.

sG, sGjac rhs, Jacobian; again somewhat different from before due to 4th order derivatives.
qf, qfjac the phase conditions (5.9b,c), and the derivatives
qfh, qfhjac the Hopf version of qf and its derivative

Figure 11(a) shows a basic bifurcation diagram of steady states, including one branch of traveling

waves, obtained from cmds2.m. As predicted, at αk we find supercritical pitchforks of steady branches.

The first one starts out stable, and looses stability in another supercritical pitchfork around α = 0.13

to a traveling wave branch (brown), which then looses stability in a Hopf bifurcation, see Fig. 12.

However, here we first focus on Hopf bifurcations from the 2nd and 3rd primary branches, which

first gain stability at some rather large amplitude, then loose it again in Hopf bifurcations, with the

solution profiles at the HBP in (c). (b) zooms into the BD at low α, including the 4th steady branch,

and three Hopf branches, while (d) shows selected Hopf orbits.

These results all fully agree with those in [BvVF17] (by extending the solutions from [BvVF17]

antisymmetrically), who however proceed further by also computing some (standing) Hopf branches

bifurcating in pitchforks and period doublings from the above (standing) Hopf branches. Naturally,

these bifurcations are also detected in pde2path, but already their localization requires some fine

tuning, e.g., small stepsizes. Moreover, with the given discretizations the branch switching then still

often fails. This will be further studied elsewhere, and instead we illustrate period doubling with a

model with better scaling properties in §5.3. On the other hand, for our periodic BC on the larger

domain we also have traveling waves and Hopf bifurcations to modulated traveling waves. Some

examples for these are considered in cmds2.m, see Fig. 12.

%% C1: init and zero -branch

al =0.42; m=0; par=[al; m; 0; 0]; % m=mass , par (3)=eps , par (4)=s (speed)

p=[]; lx=2; nx=100;p=ksinit(p,nx,lx,par); p=setfn(p,’0’); % domain and discr

p.nc.mu1 =10; p.nc.mu2=1; % large spacing of evals , be loose about localization

29

(a) BD of steady branches (b) Zooms into BD, including Hopf branches (c) Profiles at HBPs

0 0.1 0.2 0.3 0.4
0

5

10

15

α

m
a
x(

u
)

0.02 0.04 0.06

10

15

20

25

α
m

a
x
(u

)

515

15

30

0.05 0.06

10

11

12

α

m
a

x
(u

) 5

15

-2 0 2

-10

0

10

2/hpt1

-2 0 2

-10

0

10

3/hpt1

-2 0 2

x

-20

0

20

4/hpt1

(d) Selected Hopf solutions

Figure 11: Results from kspbc4/cmds1.m. Bifurcation diagrams of steady solutions (except for the brown

branch of traveling waves, see Fig. 12) (a), with zoom in (b), including the 4th steady branch and 3 Hopf

branches h1 (red), h2 (magenta) and h3 (brown). For all these branches m = ε = 0 (numerically O(10−10),

and except for the brown branch in (a) also s = 0. Profiles at the Hopf bifurcation points the steady branches

in (c). In (d) we plot selected Hopf orbits and multiplier spectra. h1 loses stability at α ≈ 0.0486 in a

pitchfork (a multiplier becoming unstable at µ = 1), and the largest multiplier of h1/pt15 is µ2 ≈ 4000. Also

h2 is initially stable, but looses stability in a pitchfork at α ≈ 0.024, i.e., rather close to bifurcation, and a

similar behaviour occurs on h3. See Fig. ?? for multiplier plots, and cmds2.m and Fig. 12 for further plots,

for instance of solutions on the secondary brown branch in (a), and the Hopf bifurcations from this branch.

5 p.nc.ilam =[1 3]; p=cont(p,40); % initial steps

p.sol.ds= -0.001; p.nc.dsmax =0.001; % some more steps with smaller stepsize

p.nc.mu2=5; p=cont(p,20); p.file.smod =10; p=cont(p,10);

%% C2: compute branches of steady patterns

for i=1:4

10 is=mat2str(i); p=swibra(’0’,[’bpt’ is],is ,i*0.01);

p.file.smod =20; p.sw.bifcheck =0; p=cont(p,5); % a few steps without PC

p.u0x=p.mat.Kx*p.u(1:p.nu); % set profile for transl -invariance

p.nc.nq=2; p.nc.ilam =[1 3 4]; p.tau=[p.tau; 0]; % now switch on PCs

p.sw.bifcheck =2; p.nc.dsmax =0.2; p.nc.tol=1e-6; p=cont(p,30+i*60);

15 end

%% C3: 1st Hopf bifurcation

figure (2); clf; ds =0.1; clear aux; aux.dlam =0; aux.nqnew =0; aux.tl=30;

aux.xif =0.1; aux.y0dsw =2; % use PDE to set d/dt u_0 for phase -constr. (in t)

aux.nqh=2; aux.qfh=@qfh; aux.qfhder=@qfhjac; % func handles to hopf constraints

20 p=hoswibra(’2’,’hpt1’,ds ,4,’h1’,aux); p.nc.ilam =1; p.hopf.ilam =[3 4];

p.hopf.fltol =1e-2; p.hopf.nfloq =10; p.hopf.flcheck =2; p.sw.verb =0;

p.hopf.sec=1; p.nc.tol=1e-6; p.nc.dsmax =0.3; p.file.smod =5; p=cont(p,1);

p.hopf.flcheck =1; p=cont(p,14); % floqps fails for larger amplitudes ,

30

% hence switch to floq: caution , only large multipliers seem correct

Listing 22: kspbc4/cmds1.m. Cell 1 deals with initialization and continuation of the trivial branch. Since
the eigenvalues µk = −α(kπ/2)4 + (kπ/2)2 of the linearization around u ≡ 0 have a rather large spacing,
in line 7 we set µ1,2 (see (A.2)) to rather large values. In Cell 2 we compute the first 4 branches of steady
patterns. The phase condition 〈∂xu∗, u〉 = 0 (2nd component of qf, see Listing 5.2) is only switched on after
a few initial steps and then setting the reference profile ∂xu

∗ = p.u0x, because it only makes sense for u∗ not
spatially homogeneous. C3 computes the first Hopf branch h1, bifurcating from steady branch 2. We use a
rather large Floquet tolerance p.hopf.fltol, see (2.5), because the Floquet computations do not remove the
neutral directions, cf. Remark A.1. Moreover, for this problem floqps for the multiplier computations via
periodic Schur decomposition sometimes fails (for unknown reasons), while floq (for unknown but maybe
related reasons) seems somewhat unreliable for the small multipliers; the large multipliers (and hence the
stability information) however always seem correct. The remainder of kspbc4/cmds1.m deals with the Hopf
branches h2 and h3, and with plotting.

(a) BD of steady branches (b) Hopf orbits (c) Stability

0.08 0.1 0.12

−1.5

−1

−0.5

0

α

s

4

20

−2 −1 0 1 2
−5

0

5

1−1/hpt1

x

−0.5 0 0.5 1

−0.5

0

0.5

−0.5 0 0.5 1

−0.5

0

0.5

Figure 12: Results from kspbc4/cmds2.m. (a) Bifurcation diagram (s over α) of the traveling wave branch

from Fig. 11(a), and of the first bifurcating modulated traveling wave branch (green), with the solution profile

at bifurcation at the bottom. (b) shows two Hopf orbits on the green branch (in the frames moving with

speeds s from (a), respectively), and (c) the associated Floquet multipliers. The bifurcation is subcritical,

and the modulated traveling waves are (mildly) unstable.

function p=oosetfemops(p) % with filltrafo to transform to per.domain

gr=p.pdeo.grid;

[K,M,~]=p.pdeo.fem.assema(gr ,1,1,1); Kx=convection(p.pdeo.fem ,gr ,1);

p.mat.K=filltrafo(p,K); M=filltrafo(p,M); p.mat.Kx=filltrafo(p,Kx);

p.mat.M0=M; p.mat.M=M^2; % save M as M0 and redefine M for the 4th order setup

function r=sG(p,u) % KS in 4th order formulation

K=p.mat.K; M0=p.mat.M0; Kx=p.mat.Kx; par=u(p.nu+1:end);

al=par (1); eps=par (3); s=par (4); u=u(1:p.nu); uxx=K*u;

r=al*K*uxx -M0*uxx +0.5* M0*(Kx*(u.^2))+s*M0*(Kx*u)+eps;

Listing 23: kspbc4/oosetfemops.m and kspbc4/sG.m. The mass matrix p.mat.M is redefined in
oosetfemops to M2, and the proper mass matrix is stored in p.mat.M0.

function q=qf(p,u) % mass (and phase) constraint for KS

par=u(p.nu+1:end); u=u(1:p.nu); % extract pars and u-vars

31

q=sum(p.mat.M0*u)/p.vol -par(2); % mass constraint

if p.nc.nq==2; % if active , then add phase constraint

5 if isfield(p,’u0x’); u0x=p.u0x (1:p.nu); else u0x=p.mat.Kx*p.u(1:p.nu); end

q=[q;u0x ’*u];

end

function q=qfh(p,y) % aux eqns in Hopf , here: sum up shifts wrt u0

par=p.u(p.nu+1:end); m=par(2); n=p.nu;

q1=sum(p.mat.M0*y(1:n,1))/p.vol -m; % mass constraint (at initial slice)

tl=size(p.hopf.y,2); q2=0; % phase constr , useful to define ’on average ’

5 if isfield(p,’u0x’); u0x=p.u0x (1:p.nu); else u0x=p.mat.Kx*p.u(1:p.nu); end

for i=1:tl; u=y(1:n,i); q2=q2+u0x ’*u; end

q=[q1;q2];

Listing 24: kspbc4/qf.m and kspbc4/qfh.m. The phase conditions for the steady and for the Hopf case.

5.3 Period doubling of a breather (demo symtut/breathe)

In [RU17, §4.2] we studied the RD system

∂tu = ∂2
xu+ f(u, v), ∂tv = D∂2

xv + g(u, v), (5.12)

with homogeneous Neumann BC, f(u, v) = u(u−α)(β−u)− v, g(u, v) = δ(u− γv), with α, β, γ > 0,

and 0<δ�1. For suitable parameters, this model has standing and traveling pulses (and traveling

fronts), and for δ→0 we find a Hopf bifurcation to breathers, see the bottom row of Fig. 13 for

examples. In [RU17] this served as an example for the usefulness of constraints, here regarding the

approximate translational invariance for the case of narrow breathers. It turns out that the ’primary

breather branch’ (red in (a)) looses stability in a period doubling bifurcation, yielding the magenta

branch in (a), which starts out stable, and then looses stability in a torus bifurcation, see (b).

%% period doubling from breather

huclean(p); ds =0.5; p=poswibra(’h1’,’bpt1’,’pd1’,ds); p.nc.tol =0.5;

3 p.hopf.nqh=0; % switch off average speed constraints (allows better stepsizes)

p.sw.bifcheck =0; p.hopf.flcheck =1; p.nc.dsmin =1e-3; p.sw.verb =0;

p=cont(p,2); p.nc.tol=1e-2; p=cont(p,5); p.nc.tol=1e-6; p=cont(p,23);

Listing 25: symtut/breathe/cmds1.m, commands for the period doubling branch.

Figure 13 is computed in the script symtut/breathe/cmds1.m, see Listing 25 for the relevant code

snippet. For more background on the demo symtut/breathe we refer to [RU17], and here only remark

that:

• A good localization of the PD bifurcation point on the breather is crucial; here γcrit ≈ −1.1

obtained using p.hopf.bisec=5 is good enough if we allow large residuals at startup of the

magenta branch. After 5 steps we set p.nc.tol=1e-6 again.

• For the magenta branch we switch off the translational constraints, i.e., set p.hopf.nqh=0.

While the constraint is useful for narrow breathers (at the start of the red branch), the wider

breathers interact strongly enough with the boundary and the constraint can be dropped. The

magenta branch can also be computed with p.hopf.nqh=1 but this becomes more expensive.

Most importantly, due to a poorly localized BP (critical multiplier −1.12) we start with a very

large tolerance tol=0.5 to get onto the period-doubled branch, but we can subsequently decrease

the tolerance to 1e-8 as usual.

32

(a) steady states (black), breather (h1, red) and PD

(pd1, magenta) branch

(b) Multipliers

5 6 7 8 9

10 -3

0.82

0.84

0.86

0.88

m
a
x
(u

1
)

15

30

4.8 5 5.2

10 -3

0.86

0.865

0.87

0.875

0.88

m
a

x
(u

1
)

20

10

0 1

-0.5

0

0.5

j
 at h1/pt15

-1 0 1

-0.5

0

0.5

j
 at h1/pt30

0 1

-0.5

0

0.5

j
 at pd1/pt10

-1 0 1

-0.5

0

0.5

j
 at pd1/pt20

(c) Solution plots

Figure 13: Period doubling bifurcation in (5.12), (α, β, γ) = (0.11, 1, 6), D = 2.

6 O(2) equivariance: traveling vs standing waves, and rela-

tive periodic orbits

In §2 we considered the cGL equation over domains which lead to simple HBPs, i.e., boxes with NBC

or DBC, where moreover in 2D and 3D we chose suitable side-lengths lx, ly, lz, in particular lx 6= ly. If

for instance in 2D we instead chose a square domain, then naturally the 2nd HBP would be double,

with oscillating ’horizontal’ and ’vertical’ stripes as two Hopf eigenfunctions.

For steady bifurcations, the higher multiplicities of BPs due to discrete symmetries and the as-

sociated multiple bifurcating branches can be dealt with systematically in pde2path, as described in

[Uec20a]. For HBPs of higher multiplicity we do not yet provide similar routines, but rather treat

them in an ad hoc way. Moreover, for Hopf problems multiple branches due to continuous symmetries

are probably even more important than multiple branches due to discrete symmetries. In particular,

O(2) equivariant Hopf bifurcations arise in a variety of settings, for instance for translational invari-

ant problems (due to pBC) with reflection symmetry, and similarly for problems on circular domains,

where the role of translational invariance is played by spatial rotations. Thus, here we first consider

the cGL equation in boxes with pBC, and in a disk domain (demos cglpbc and cgldisk), and then

review the demo gksspirals dealing with a RD model from [Uec19, §3.2] in the unit disk.

For background on O(2) equivariant Hopf bifurcation see, e.g., [GS02], and the references therein.

Loosely said, the main result is that for double HBPs we generically obtain three bifurcating branches

of Hopf orbits: left/right traveling waves (TWs), and standing waves (SWs), which correspond to

equal amplitude superpositions of TWs. Importantly, the TWs are steady solutions in an appropriate

33

co-moving frame, and are thus much cheaper to compute than general Hopf orbits.

6.1 The cGL equation in boxes with pBC: demo cglpbc

6.1.1 1D

. We consider a variant of (2.2), namely

∂t

(
u1

u2

)
= −G(u, λ) (6.1)

:=

(
∆ + r −ν
δ2ν ∆ + r

)(
u1

u2

)
− (u2

1 + u2
2)

(
c3u1 − µu2

µu1 + c3u2

)
− c5(u2

1 + u2
2)2

(
u1

u2

)
+ s∂x

(
u1

u2

)
,

first on the interval Ω = (−π, π) with pBC. The additional parameter δ can be used to break the

phase invariance u 7→

(
cosφ − sinφ

sinφ cosφ

)
u (i.e. u 7→ eiφu in complex notation) of (2.1), see below for

further comments, and the parameter s ∈ R describes a frame moving with speed s, useful later for

the continuation of TWs. As in §2 we fix c3 = −1, c5 = 1, ν = 1, (and initially µ = 0.5, δ = 1 and

s = 0), and use r as the primary bifurcation parameter.

The HBPs from the trivial solution are still

rk = k2, k ∈ N, eigenvalues ±iω with ω = ν, (6.2)

but now are double for k > 0. Two ’natural’ two eigenfunctions are (in complex notation)

φ1(t, x) = ei(ωt−kx) and φ2(t, x) = ei(ωt+kx), (6.3)

and the ansatz for bifurcating periodic orbits is

u = z1φ1 + z2φ2 + h.o.t, (z1, z2) ∈ C2. (6.4)

Thus, φ1 corresponds to a right TW with speed ω/k, and φ2 to a left TW with speed −ω/k. For s = 0,

(6.1) is O(2) equivariant, i.e., G(γu) = γG(u) for all γ ∈ Γ = O(2). Here γ = (m, ξ), m ∈ Z2 = {±1},
ξ ∈ SO(2) = [0, 2π), and the action of γ on x and u(x) is given by (γu)(x) = u(m(x + ξ)) (reflection

and translation). For each k ∈ N, the subspace Xk := span{φ1, φ2} is Γ invariant, and the action of

γ on (z1, z2) is

m : (z1, z2) 7→ (z2, z1), ξ : (z1, z2) 7→ (eiξz1, e
−iξz2). (6.5)

The equivariant Hopf theorem ([GS02, Thm 4.9] or [Hoy06, Thm 4.6]) yields that generically for each

k we have exactly three bifurcating branches, namely
rTW u(x, t) = z1φ1 + h.o.t

lTW u(x, t) = z2φ2 + h.o.t

SWs u(x, t) = z(φ1 + φ2) + h.o.t,

(6.6)

34

where as usual h.o.t stands for higher order terms. Moreover, the TWs are solutions of the form

u(x, t) = v(x− st) with some speed s ∈ R, (6.7)

i.e. relative equilibria, which means that we can find them as steady solutions of (6.1) with a suitable

s. In fact, from the phase invariance for δ = 1 we already have an explicit formula for TWs, namely

u(x, t) = Rei(ωt−k·x), |R|2=− c3

2c5

±

√
c2

3

4c2
5

+ r − k2, ω=ω(k, r)=ν − µ|R|2, (6.8)

but (6.7) is the more general result. Moreover, on the spaces Xk the additional SO(2) phase symmetry

ϑ : u 7→ eiϑu acts like time-shifts u 7→ u(t + ϑ/τ), and hence is not an additional symmetry for the

Hopf bifurcation and does not need to be considered further.

Remark 6.1. In summary, at each rk = k2 we have the bifurcation of TWs and SWs, and our aim is

to compute these numerically (even if for δ = 1 we know the TWs analytically from (6.8)). Thus we

face a similar problem like for steady bifurcations of higher multiplicity, discussed in detail in [Uec20a]:

When computing the eigenfunctions associated to the eigenvalue iω of Gu we in general do not obtain

the ’natural’ ones φ1,2|t=0 = e±ikx from (6.3), but some linear independent φ̃1,2 ∈ span{eikx, e−ikx}.
Thus, even though we know the analytic form (6.6) of the bifurcating branches, this only applies to the

natural basis φ1,2 of the center eigenspace. In principle we could compute the (3rd order) amplitude

system on the center manifold associated to the basis φ̃1eiωt, φ̃2eiωt, and from this the coefficients z̃1,2

for TWs and SWs. However, in contrast to the steady case, for which we provide routines to do so,

we refrain from implementing this for the Hopf case in pde2path, because the general case of multiple

Hopf bifurcations becomes significantly more complicated, see, e.g., [Kie79], or [Mei00] for the case

where additional mode interactions with steady modes come into play. Instead, we proceed ad hoc,

and require user input of coefficients z1, z2 (and z3, . . . , zm in case of still higher multiplicity m, see

§6.1.2). In practice this works quite well. c

%% C1: init , and continuation of trivial branch

p=[]; lx=pi; nx=50; par =[-0.1; 1; -0.5; -1; 1; 0; 1]; % r,nu,mu,c3,c5,s,del

p=cGLinit(p,lx,nx,par); dir=’01D’; p=setfn(p,dir); % initialize

p=box2per(p,1); p=cont(p,20); % switch on periodic BC and continue

%% C2: bif to SWs/TWs at HBP2;

figure (2); clf; aux =[]; aux.dlam =0; dir=’01D’; hp=’hpt2’; nsteps =40;

for sw=1:2

8 switch sw

case 1; aux.z=[1 -2i]; ndir=’1dtw1’; pc=0; % TW

case 2; aux.z=[1 0]; ndir=’1dsw1’; pc=1; % SW

end

if pc % SWs , need phase -condition , resp. can be enforced by PC

aux.nqh=1; aux.qfh=@qfh; aux.qfhder=@qfhjac;

p=hoswibra(dir ,hp ,0.1,4,ndir ,aux);

p.hopf.ilam =6; p.u0x=p.mat.Kx*p.hopf.tau(1:p.nu) ’; % transl.phase cond

else p=hoswibra(dir ,hp ,ds ,4,ndir ,aux); end

p.nc.dsmax =0.2;p.hopf.bisec =5;p.file.smod =1;p.sw.bifcheck =1;p=cont(p,nsteps);

end

Listing 26: cglpbc/cmds1d.m (first 2 cells). In C1, the only new command is box2per, which switches on
the pBC. In C2 we compute a TW branch and a SW branch bifurcating from Hopf point 2 by ’guessing’ and
passing on to hoswibra coefficients aux.z. For the SW branch we additionally set the average translational
PC qfh as in §5.2, with reference profile u0(x) = upred(0, x), where upred is the predictor for the Hopf orbit,
and speed parameter s (given in par(6)).

35

In Listing 27 we give the start of cglpbc/cmds1d.m for (6.1) on Ω = (−π, π) with pBCs, which are

switched on via box2per, see [DU17]. We ignore the first (spatially homogeneous k = 0) Hopf branch,

and in C2 compute one TW branch and one SW branch bifurcating at the 2nd HBP, corresponding

to wave number k = 1. Here we ’guess’ by some trial and error the coefficients z1, z2 for each of these

branches. Additionally, for the SW branch we set a translational PC (with s = 0). It turns out that

this PC is usually enough to force SWs, even if the guess for the coefficients aux.z rather corresponds

to a TW. See Fig. 14 for some results. The SW branch stays unstable up to r = 2 and beyond. The

TW branch starts unstably (as expected, as the trivial branch is already unstable) with ind(uH) = 5,

which turns into ind(uH) = 4 at the fold, into ind(uH) = 2 shortly after, and uH becomes stable near

r ≈ 1.25. Both crossings of unstable multipliers into the unit circle are of torus type, and hence the

bifurcating branches in this form currently can not be computed with pde2path. But as already said,

the TWs can also be computed as relative equilibria, i.e., as steady states in a frame comoving with

speed

s = ω/k at bifurcation, (6.9)

where k is the spatial wave number. The pertinent branch switching is implemented in

p=twswibra(dir,fname,spar,kwnr,newdir,aux),

where spar is the index of s in the parameter vector, kwnr = k, and aux.z again can be used to pass

the coefficients z1,2 for the predictor guess. Complementing this with the PC qf, i.e., 〈∂xu0, u〉 = 0,

we obtain the same TW as in C2 with a small error in the period T between the two methods, which

vanishes if we increase the temporal resolution for the hoswibra solution. To obtain a space–time

plot of TWs, use twplot.

%% C3: TWswibra , speed s=om/k, HBP2

aux.z=[1 -2i]; spar =6; kwnr =1; p=twswibra(’01D’,’hpt2’,spar ,kwnr ,’1dtw1b’,aux);

p.u0(1:p.nu)=p.tau(1:p.nu); p.u0=p.u0 ’; p.nc.mu2 =0.1;

p.u0x=p.mat.Kx*p.u0; p.u(1:p.nu)=p.u(1:p.nu)+0.01*p.tau(1:p.nu);

p.nc.nq=1; p.nc.ilam =[1;6]; % 1 phase -cond , speed as second parameter

p.fuha.qf=@qf; p.sw.qjac =1; p.fuha.qfder=@qjac;

p.sw.bprint =6; clf(2); p.nc.dsmax =0.05; p.sol.ds =0.03; p=cont(p,60);

%% C4: secondary bif via hoswibra from TW-cont

aux =[]; aux.dlam =0; aux.nqh=1; aux.nqnew =0; aux.tl=40; aux.qfh=@qfh;

aux.qfhder=@qfhjac; p=hoswibra(’1dtw1b’,’hpt2’ ,0.04,4,’1dtw1bs1 ’,aux);

p.file.smod =2; p.sw.bifcheck =0; p.hopf.ilam =6; p.nc.ilam =1; p=cont(p,80);

Listing 27: cglpbc/cmds1d.m (cells 3 and 4). In C3 we compute the TW branch as a relative equilibrium via
twswibra. On this branch we find HBPs, and in C4 we compute secondary Hopf branches bifurcating from
this relative equilibrium; see Fig. 14 for plots (as obtained from plotcmds.m, and text for further comments.

The continuation of the TW as a relative equilibrium yields HBPs on this branch, at the locations

where the continuation as periodic orbits yields the (torus) BPs, see also Remark 6.2(a). Now we can

use hoswibra to compute the bifurcating modulated TWs as relative periodic orbits (relPO). Figure

14(c) shows a zoom near the fold; the bifurcating branch seems to connect to the SW branch near

r ≈ 0.89, see also the solution plots in (e), where the bottom row shows the solutions in the lab frame,

i.e., by shifting back x 7→ x+ st. Here we plot over Ω× [0, 2T2), where T2 ≈ 2.28 is the period in the

moving frame. In general, Hopf orbits bifurcating from relative equilibria (i.e., in the moving frame)

correspond to quasiperiodic solutions in the lab frame, and the quotient T1/T2 (with T1 = L/(ks),

s the comoving speed, L the domain size, and k the wave number) varies continuously. At pt32

36

(a) (b) (c)

1 1.4

r

0

0.2

0.4

0.6

0.8

1

1.2

||
u

||

30

30

20

1 1.4

r

3.5

4

4.5

5

5.5

6

T

30
30

0.8 0.9

r

0.7

0.8

0.9

1

1.1

m
a
x
(u

)

32

10

1 1.5

r

1.1

1.2

1.3

1.4

1.5

1.6

1.7

s 32

10

60

20

(d) (e)

0.76 0.8 0.84 0.88

r

1.9

2

2.1

T
1
/T

2

1.4 1.6 1.8

r

1.2

1.25
T

1
/T

2

Figure 14: (6.1) on Ω = (−π, π) with pBC, (ν, µ, c3, c5, δ) = (1, 0.5,−1, 1, 1). (a) BD of TW (brown) and

SW (blue) branches, and secondary bifurcation from TW branch (dark and light magenta). (b) intial guesses

for TW and SW branches, and two solution plots. (c) Zoom into BDs near TW fold, including secondary

branches. (d) Quotients (top) of periods T1 = 2π/s and T2 where s is the frame speed and T2 the period in

the comoving frame. Left on ’connecting branch’, right on magenta modulated TW. Bottom: solution plot in

lab frame (bottom) at marked magenta point. (e) solution plots at marked points on dark magenta branch

in comoving frame (top) and lab frame (bottom). At the fold (pt32) there is the resonance T1 = 2T2, and

the combination of left traveling in the moving frame and the motion of the frame yields the SW with period

T = 2T2.

the solution is (approximately) 2T1 periodic in the lab frame and corresponds to the SW. Similarly,

solution 20 on the magenta branch is approximately 11T2 = 33.36–periodic in the lab frame, see the

bottom panel of (d).

Remark 6.2. (a) The multipliers of the periodic orbit u(x, t) in the lab frame are given by γj =

e−µjT , where the µj are the eigenvalues of the linearization around the TW in the comoving frame.

In detail, the ansatz u(x, t) = v(x − st, t) yields ∂tv = −G(v) + s∂ξv, with linearization ∂tv =

−Gu(v0(ξ))v + s∂ξv =: −Lv. As L is independent of t, the linear flow yields v(T) =
∑

j cje
−µjTφj,

where v(0) =
∑

j cjφj, and where for simplicity we assumed semisimple eigenvalues µj of L with

associated eigenvectors (eigenfunctions) φj, j = 1, . . . , nu.

(b) To plot the modulated TWs in the lab frame we use the function lframeplot(dir,pt, wnr,cmp,aux).

This first aims to determine the minimal m ∈ N such that msT = qL for some (minimal) q ∈ N, where

T is the period in the frame moving with speed s and L is the domain size. Equivalently, m = qL/sT

for some (minimal) integer q, and the minimal is period T ∗ = mT = q
s
L. Of course, m = qL/sT ∈ N

numerically means |m−bmc| <tol, where tol can be passed as aux.pertol. This should not be taken

too small, i.e., on the order of the expected error in the speed s and the period T . Naturally, this also

ignores the fact that generically T1/T2 6∈ Q, and that the associated orbits are quasiperiodic rather

37

than periodic (with a possibly large period). Alternatively, an integer m can be passed in aux.m to

force the plot over [0,mT]. lframeplot at the end also reports the final (integer) grid-point shift of

the transformation to the moving frame is given, which should be 0. c

6.1.2 2D box with pBC in x

In Fig. 15 we give some very introductory results for (6.1) over the 2D square box Ω = (−π, π)2, with

pBC in x and homogeneous Neumann BC in y. The 2nd HBP at (analytically) r = 1 is then triple,

with Hopf eigenfunctions (in complex notation)

ei(ωt−x), ei(ωt−x), cos(y)eiωt (6.10)

and modulo spatial translation we may expect at least five primary bifurcating branches: SW and

TW (twice) in x, SW in y, and a mixed SW mode of the form b(t) sin(x) cos(y). Four such branches

are computed in cmds2d.m via ’educated’ guesses of the three coefficients for the three numerical

eigenfunctions replacing (6.10). Naturally, the TW branches can again also be computed as relative

equilibria, and we find several secondary bifurcations. See cmds2d.m, but here we refrain from giving

the further details.

(a) (b)

0.8 0.9 1

r

0

0.2

0.4

0.6

0.8

1

1.2

m
a
x

20

20
20

20

0.8 0.9 1

r

4.2

4.4

4.6

4.8

5

5.2

5.4

5.6

T

20

2020

20

(c)

Figure 15: (6.1) on Ω = (−π, π)2 with pBC in x and Neumann BC in y, (ν, µ, c3, c5, δ) = (1, 0.5,−1, 1, 1).

(a) BD of 4 branches bifurcating from the 2nd HBP r = 1: swy (black), tw (red), swx-y (dark blue), swx

(light blue). (b,c) example solution plots (roughly half a period). swy (top) and (swx) in (b), swx-y (left)

and tw (right) in (c).

6.2 The cGL equation in a disk: demo cgldisk

A situation very similar to the 1D-pBC case arises for (6.1) in a disk with Neumann BC (or other

rotationally invariant BCs). The symmetry group is again O(2) where the role of spatial translations

38

is now played by spatial rotations(
x

y

)
7→ Rϑ

(
x

y

)
:=

(
cosϑ − sinϑ

sinϑ cosϑ

)(
x

y

)
, (6.11)

ϑ ∈ [0, 2π). The generator ∂ϑRϑ|ϑ=0 of the associated Lie algebra acts on u(x, y) as

∂ϑu(Rϑ(x, y))|ϑ=0 =
[
∂xu∂ϑx(ϑ) + ∂yu∂ϑy(ϑ)

]
|ϑ=0 = −y∂xu+ x∂yu =: Krotu.

Hence the rotational phase condition reads 〈Krotu0, u〉 = 0, where u0 is a suitable profile, typically set

at bifurcation. Similarly, the rotating wave (RW) ansatz u((x, y), t) = ũ(R−st(x, y), t) yields

∂tu = −sKrotũ+ ∂tũ = −G(u) = −G(ũ), hence ∂tũ = −G(ũ) + sKrotũ,

after which we drop the ˜ again.

For the implementation, in oosetfemops we generate Krot via

po=getpte(p); x=po(1,:); y=po(2,:); p.mat.Krot=convection(fem,grid,[-y;x]). (6.12)

The PC q = 〈Krotu0, u〉 = 0 is implemented as

function q=qf(p,u); q=(p.mat.Krot*p.u0)’*u(1:p.nu); end (6.13)

and the pertinent modification of sG reads r=K*u-p.mat.M*f+s*Krot*u.

The eigenfunctions v of ∆ with Neumann BC have the form un,j(x, y) = Bn,j(lr)gn(φ), where

gn(φ) = einφ, l is a scaling factor, and Bn,j is a Bessel function. These can be used to explicitly

compute the HBPs from u ≡ 0, and to see that the HBPs are simple for n = 0 and double for n 6= 0

(with sin(nφ) and cos(nφ) the two basis functions in the angular direction). For n = 0, there is no

angular dependence, and hence switching on the PC on such branches (with u0 = u0(r)) leads to

a singular Jacobian because Krotu0 = 0. For coarse meshes, the rotational invariance is sufficiently

broken for the continuation to work also without PC, but for finer meshes the PC becomes vital for

robust continuation.

Table 6: Short overview of scripts and functions in hopfdemos/cgldisk; see sources for details.

script/function purpose,remarks

cmds2d, plotcmds, cGLinit main script, plotting commands, init function as usual
sG, sGjac, nodalf,njac rhs, Jacobian, and nonlinearity, as usual
qf,qjac,qfh,qfhjac phase conditions, based on Krot generated in oosetfemops, and ver-

sions for Hopf orbits

hoplott, plottip, lfplottip, gettip some additional customized plot commands, and helper functions

Table 6 gives a short overview of the files for the implementation. In cmds2d we consider (6.1) in a

disk with radius π, with base parameters (ν, µ, c3, c5, δ) = (1,−5,−1, 1, 1), and bifurcation parameter r

as before. We changed µ in order to have pronounced ’spirals’ [KH81, BKT90, Bar95, Sch98, SSW99]

as RWs, see Fig. 16, and §6.3 for further more general comments. Relative periodic orbits then

typically correspond to ’meandering spirals’ which are most easily characterized by the motion of the

tip. In order to compute the spiral tips with reasonable accuracy, at the start of cmds2d we locally

39

refine the mesh near (x, y) = 0, see Fig. 16(a), leading to a mesh with about 1400 grid points. The

temporal resolution for POs will be 30 gridpoints, and thus we will have about 84000 DoF, which we

find a reasonable compromise between accuracy and speed; see also Remark 6.3.

(a) (b) (c)

0.5 1 1.5

r

0

0.2

0.4

0.6

0.8

1

1.2
m

a
x

50

30

4
10

(d) (e) (f) (g)

0.7 0.8 0.9

r

1.2

1.22

1.24

T
1
/T

2

1.3 1.4

r

0.45

0.5

0.55

0.6

T
1
/T

2

-0.5 0 0.5 1

-0.5

0

0.5

j
 at mrw1/pt5

-0.5 0 0.5 1

-0.5

0

0.5

j
 at mrw2/pt7

0 0.4 0.8

0

0.5

1

-0.5 0 0.5 1

-1

-0.5

0

0.5

-1 0 1

-1

0

1

-1 0 1

-1

0

1

Figure 16: (6.1) on a disk with radius π and homogeneous NBC, (ν, µ, c3, c5, δ) = (1,−5,−1, 1, 1). (a) locally

(near ρ = 0) refined mesh. (b) basic BD of SWs (blue), RWs (brown), and two branches of modulated RWs,

mRW1 (light brown, unstable), and mRW2 (red, stable). (c) example plots (snapshots from roughly the

first quarter period) of SW and RW. (d) Period quotients on mRW1 (top) and mRW2 (bottom) branches,

T1 = 2π/s (lab-frame time period of RWs), T2 =period on mRW2 in the rotating frame. The mRW1 branch

is unstable and hence not discussed further, but the mRW2 branch is stable after the fold, and the red dots

in the bottom panel correspond to the solutions used in (f,g). (e) Floquet spectra of selected mRW1 and

mRW2. (g) Rotating frame plots of example solutions pt4 (top) and pt10 (bottom) from mRW2 branch (first
1
5th of period), including computed tip positions. (g) Top: tip-path for mRW2/pt4 in comoving (left) and

lab frame (right, m = 2). Bottom: lab frame paths of tips for mRW2/pt7 (left, m = 13) and mRW2/pt10

(right, m = 9).

Figure 16 (b) shows a basic BD of SWs, of RWs bifurcating at the second HBP, and two branches

mRW1 and mRW2 of modulated RWs. As in Fig. 14 we omit the (stable) primary spatially uniform

SW branch bifurcating at r = 0. The RW branch (dark brown) is stable between the first and second

HBP, where mRW1 and mRW2 bifurcate. The SW branch is unstable. We now focus on mRW2,

which bifurcates (slightly) subcritically, and is stable after the fold, which however for efficiency we

check a posteriori. (d) shows the ratio of periods T1 = 2π/s (lab-frame period of RWs) and T2 (period

on mRW2 in the rotating frame).

To visualize the solutions in the lab frame one often uses the motion of the spiral tip (x̃(t), ỹ(t)),

40

where, if (x(t), y(t)) are the coordinates in the rotating frame, then(
x̃(t)

ỹ(t)

)
= Rst

(
x(t)

y(t)

)
. (6.14)

There are different options how to define the tip coordinates (x, y)(t). In the far field, in radial direction

the spirals behave like plane waves, and thus the basic idea is to use the intersection of isolines of u1

and u2 to define (x, y)(t). Alternatively, for ’good’ spirals one can use the maximum of |∇u1 ×∇u2|,
following [JSW89]. In [BKT90], a definition based on isolines of the nonlinearity (f1(u), f2(u)) has

been used as numerically robust definition of the tip for the case of a FHN like model. All these

definitions typically give approximately the same tip positions. Here we choose the intersection of the

f1(u) = c1 and f2(u) = c2 level curves (with a small tolerances), with c1 = c2 = 0.25, which for all our

spirals gives a unique tip which makes good sense visually, see Fig. 16(f) for example solutions, and

gettip for the implementation. Moreover, with the locally refined spatial mesh and a sufficient time

resolution, the tip paths t 7→ (x(t), y(t)) in the comoving frame are ’reasonably smooth’, see the first

plot in (g) for an example. To plot the tip paths in the lab frame, we again choose a (minimal) m ∈ N
such that |mT1− qT2| <tol for some q ∈ N. Using tol=0.025 and (6.14) for 0 ≤ t ≤ mT1 generates the

flower–like patterns plotted in (g). In particular, at pt4 (top right of (g)) we are near 1 : 2 resonance.

Similarly, the top panel of Fig. 16(d) shows the period quotient on the first mRW branch mRW1.

On mRW1 we have a similar tip motion as on mRW2, but since these mRWs are unstable (see top

panel of (e)), we skip further plots and discussion.

Remark 6.3. (a) The RWs can be plotted using rwplot. As in Remark 6.2(a), the multipliers of the

RWs can be obtained from exponentiation of the linearization around the RW in the lab-frame. See

below, in particular Remark 6.4, for comments on such spiral spectra.

(b) With the given settings, leading to about 84000 DoF for the Hopf orbits, the computation of

the mRW branches (10 steps on each) takes about 400s. The tip paths in Fig. 16(g), computed on

the given mesh (with no interpolation involved), suggest that the numerics are somewhat pushed

to the limit here, i.e., the meshes (in x and t) may be somewhat under resolved. However, we did

check that the results stay qualitatively the same when increasing the temporal resolution to 50. On

the other hand, omitting the preparatory step of local mesh refinement near (x, y) = 0 the flower

patterns in (g) become (even) more ragged, but other quantities such as the BPs and the periods only

change slightly, which indicates that we have a correct general picture. To obtain smoother tip paths,

alternative methods allowing finer meshes should be more appropriate, e.g., time-simulation [BKT90],

or shooting methods for Hopf orbits [SN10, SN16]. c

6.3 Reaction diffusion in a disk: Demo gksspirals

Spirals like in §6.2 occur in a variety of settings, i.e., in various excitable or oscillatory 2D RD systems.

In particular, the cGL equation can be considered as a normal form near a Hopf bifurcation, and is

an example of a so–called λ− ω system

∂tu = ∆u+ λ(u, v)u− ω(u, v)v, ∂tv = ∆v + λ(u, v)v + ω(u, v)u, (6.15)

where λ and ω are some functions of u2 + v2. See [PET94] for further discussion, where in particular

λ(u, v) = 1−u2− v2 and ω(u, v) = 1 + q(u2 + v2), and where then the role of q (corresponding to µ in

(6.1)) as a perturbation parameter for the existence theory of spiral waves and its role to determine

41

their shape is discussed.

In [Uec19, §3.2], with associated demo hopfdemos/gksspirals we consider a two-component reac-

tion diffusion system from [GKS00] on the unit disk with somewhat non–standard Robin–BC, namely

∂tu = d1∆u+ (0.5 + r)u+ v − (u2 + v2)(u− αv),

∂tv = d2∆v + rv − u− (u2 + v2)(v + αu),
(6.16)

∂nu+ 10u = 0, ∂nv + 0.01v = 0, (6.17)

where n is the outer normal. In [Uec19, §3.2], our focus was on the computation of the primary SW

and RW branches, and we did not compute the RWs as relative equilibria, and thus also skipped the

computation of modulated RWs as relative POs. Here we include this and thus extend the presentation

in [Uec19, §3.2].

The eigenfunctions of the linearization around (u, v) = (0, 0) are again build from Fourier Bessel

functions

φm(ρ, ϑ, t) = <(ei(ωt+mϑ)Jm(qρ)), m ∈ Z, (6.18)

where (ρ, ϑ) are polar-coordinates, and with, due to the BC (6.17), in general complex q ∈ C \ R.

Then the modes are growing in ρ, which is a key idea of [GKS00] to find modes bifurcating from

(u, v) = (0, 0) which resemble spiral waves near their core. The trivial solution (u, v) = (0, 0) is stable

up to r1 ≈ −0.21 where a Hopf bifurcation with angular wave number m = 0 in (6.18) occurs, and

then further Hopf-bifurcations occur with m = 1, 2, 0, 3,

Like (6.1), (6.17) has spatial symmetry group O(2), acting by rotations and reflections in x. The

modes (6.18) with m 6= 0 have the symmetry of RWs, and the associated HBPs are double. Thus, as

in (6.4) we use a modified branch switching

u(t) = u0 + 2εαRe(z1e−iωH tψ1 + z2eiωH tψ2) (6.19)

with user provided z1, z2 ∈ C. If we apply (6.19) at a double Hopf bifurcation with (z1, z2) = (1, 0),

then it turns out that the initial guess is sufficiently close to a RW for the subsequent Newton loop

to converge to this RW. On the other hand, z1 = 1, z2 = i at the HBPs with m ≥ 1 yields bifurcation

to SW. Alternatively, setting the PC (6.13) (and initializing s = 0) forces SWs, and moreover makes

the continuation of SWs more robust.6

First (script files cmds1 and cmds1sw) we follow [GKS00] and set α = 0, d1 = 0.01, d2 = 0.015, and

take r as the main bifurcation parameter. Then (script file cmds2) we set α = 1 (where α corresponds

to q from [PET94]), see the comments following (6.15), let

(d1, d2) = δ(0.01, 0.015), (6.20)

and also vary δ which corresponds to changing the domain size by 1/
√
δ. Note that the operator/ma-

trix ∂φ = Krot from (6.12), and hence the rotating wave speed s is independent of δ. In the end, this

gives a model with distinguished bifurcations of spiral waves from the trivial solution (u, v) ≡ 0.

Figure 17(a) shows a basic bifurcation diagram for (6.16), (6.17), and (b) and (c) illustrate the

6The continuation of SW works also works without PC, because the FEM discretization destroys the (strict) rota-
tional invariance, but it initially needs small stepsizes due to small eigenvalues, and in the initial continuation steps the
angular phase of the SW pattern slightly shifts.

42

(a) Bifurcation diagram (b) snapshots from rotating waves rw2,rw3 (top) and rw5,rw6 (bottom)

0 0.4

r

0

0.2

0.4

0.6

0.8

1

||
u
||

*

(d) snapshots from standing waves sw2 and sw3

Figure 17: (a) Basic bifurcation diagram for rotating waves (full lines rw2, rw3, rw5, rw6, rw7), and

standing waves (dashed lines sw1,. . . , sw7) for (6.16), (6.17), 10 continuation steps for each. On sw1 and

the RW branches we mark the points 5 and 10. (c) Snapshots of u from the RW branches at the last points,

t = 0, Tj/9, 2Tj/9, Tj/3, with Tj the actual period. (c) Snapshots of u from the RW branches sw2 and sw3.

Run cmds1 and cmds1sw.m to obtain these (and other) plots as in [Uec19, §3.2].

difference between rotating and standing waves. Otherwise we refer to [Uec19, §3.2] for further

discussion of this and other plots generated in cmds1, cmds1sw and cmds2. Instead, here we focus

on the implementation, and comment on results from cmds3 about modulated RWs (not discussed in

[Uec19, §3.2]).

Table 7: Scripts and functions in hopfdemos/gksspirals.

script/function purpose,remarks

cmds1, cmds1sw main script for α = 0 in (6.16): continuation of RW (SW) branches
cmds2 similar to cmds1, but for α = 1 in (6.16)
cmds3 continuation of RW (1–armed spiral) for (α, δ) = (1, 0.25), branch–switching

to mRW, and continuation in δ.

geo=circgeo(r,nx) defining a circular domain
p=rotinit(p,nx,par) initialization, as usual
sG, sGjac, nodalf rhs, Jacobian, and nonlinearity, as usual
nbc BC for (6.17), using the convenience function gnbc

auxcmds making movies, using customized plotting from homovplot(..)

hoplotrot, proplot, levplot some additional customized plot commands

Table 7 lists the pertinent files in gksspirals. The general setup is very similar to cgldisk,

but a difference is that here we use the ’legacy’ pdetoolbox setting. As a consequence, there is no

file oosetfemops.m. Instead, in line 5 of rotinit.m we define a diffusion tensor, and the system

matrices are then generated via the pde2path function setfemops. Additionally, we set up a function

nbc.m defining the boundary conditions. See Listings 28-29. Afterwards, the files sG.m and sGjac.m

encoding (6.16),(6.17), and the script files follow standard rules, where for the plotting we set up

some customized functions derived from the default hoplotsol. Additional to the discussion in

[Uec19, §3.2], in C4 of cmds1 we compute the RWs via twswibra as relative equilibria. For this we

need to compute Krot in the pdetoolbox–setting, see setfemops for a pertinent local modification

of the standard setfemops function. To compute level curves of spirals and from these the tips of

43

spirals we take advantage of pdetoolbox plotting routines (see Fig. 18(b) for an example). The script

cmds1sw differs from cmds1 only in setting the PC (6.13). cmds2 is similar to cmds1 but with α = 1

and with continuation in the domain size to have more pronounced spirals.

function p=rotinit(p,nx,par) % init for gksspirals -demo , legacy sfem=1 setting

p=stanparam(p); screenlayout(p);

p.file.dircheck =0; p.nc.ilam =1; p.nc.neq=2; p.fuha.outfu=@hobra;

p.fuha.sG=@sG;p.fuha.sGjac=@sGjac; % rhs

5 p.eqn.c=isoc ([[0.01 ,0];[0 ,0.015]] ,2 ,1); % diffusion tensor (for setfemops)

p.eqn.b=0; p.eqn.a=0; % no conv. or linear terms (put these into nodalf)

p.fuha.bc=@nbc; p.fuha.bcjac=@nbc; % BCs

p.mesh.geo=circgeo(1,nx); hmax =2/nx; p=stanmesh(p,hmax);

p.sw.sfem =1; p.vol=2*pi; p.sw.bifcheck =2; p.nc.neig =20;

10 p=setfemops(p); % here using legacy setfemops , diff

Listing 28: gksspirals/rotinit.m (first 10 lines). The crucial difference to the other Hopf demos is that
this is based on the old pdetoolbox setting. This leads to changes in lines 5-8, i.e., the setup of the tensors
and BC needed by setfemops in line 10 (which does not call a function oosetfemops if p.sw.sfem6= −1).

function bc=nbc(p,u) % BC for model rot

b1=10; b2 =0.01; % q-vals in \pa_n u+q*u=0 formulation

c1=p.eqn.c(1); c2=p.eqn.c(end); % diff. constants

b1=b1*c1; b2=b2*c2; % org q-vals need to be multipl. by diff -const.

5 enum=max(p.mesh.e(5,:)); % #ofboundary segments

g=[0;0];q=[[b1 0]; [0 b2]];

bc=gnbc(p.nc.neq ,enum ,q,g); % same BC on all bdry segments

Listing 29: gksspirals/nbc.m, using the ’generalized Neumann BC’ convenience function gnbc.

In cmds3 we set (α, δ) = (1, 0.25) and start by continuation of the one-armed spirals as relative

equilibria. Here we again strain the numerics with a mesh of about 3000 points, and 20 points in

time and hence about 120000 DoF for the continuation of the mRW.7 Figure 18 shows some basic

results from cmds3. The RW1 branch stabilizes shortly after bifurcation, where a branch of mRWs

(mRW1) bifurcates. As expected, this is somewhat similar to the cGL case in Fig. 16, but there are

also interesting differences: Again, the branch of RWs stabilizes at the HBP due to the subcritical

bifurcation of mRW1, which itself are unstable. However, in contrast to the cGL case, here the RW1

branch then stays stable up to large r > 10, i.e., upon further continuation in r there does not seem

to be a further bifurcation to mRWs. Moreover, there now seems to be a period locking between

RW1 and mRW1, i.e., T1/T2 = 1 (within numerical accuracy8), where T1 is the period on RW1 in

the lab frame, and T2 is the period on mRW1 in the frame rotating with speed s. Panels (c), (d)

show tip–paths in the rotating and lab frames, and additionally, in (d) we also show the 20 largest

multipliers at mRW1/pt25, of which 1 is unstable. (e) shows a continuation of rw1/pt15 in δ, and the

associated spectrum at δ = 0.1 (see Remark 6.4 for further comments). The period T only depends

weakly on the domain size 1/
√
δ, as it should for reasonably well developed spirals for which the BC

play a negligible role.

Remark 6.4. As in Remark 6.2(a), the multipliers γj of a RW can be obtained by exponentiation of

the eigenvalues of the linearization in the co–rotating frame. Such spiral-wave spectra [SS06, WB06,

SS07] show some interesting structure, e.g., near the imaginary axis they are periodic with period s,

see Fig. 18(e) for an example. Heuristically, this can be explained as follows. In polar coordinates

7The finer mesh is again needed to somewhat accurately compute the tip paths, and, here also to compute the HBPs
from the RWs with good accuracy.

8Increasing the temporal resolution mildly from 20 to 40, we obtain qualitatively the same behavior, and the quotient
T1/T2 in the bottom panel of (a) moves closer to 1. See also Remark 6.3

44

(a) (b) (c)

0 1 2

2

4

6

T

15255

0.5 1 1.5 2

r

0.98

1
T

1
/T

2

-1 0 1

-1

-0.5

0

0.5

1
u=0.1

v=0.1

-0.04 0

0

0.02

0.04

0.06

-0.06 0

-0.05

0

0.05

0 2 4

t

0

0.2

0.4

u
1
((0,0),t)

u
1
((1,0),t)

(d) (e)

0 0.02 0.04

-0.02

0

0.02

0 0.04

-0.02

0

0.02

0 1 2

t

0

0.5

1 u
1
((0,0),t)

u
1
((1,0),t)

0 1

-0.5

0

0.5

j
 at mrw1/pt25

0.1 0.15 0.2

2.07

2.075

T

20

0 10 20
-20

-10

0

10

20

0 1 2

0

2

4

6

8

10

Figure 18: Results from cmds3.m. (a) top: BD (α = 1, δ = 0.25) of RW1 (magenta, rotating (spiral) wave)

and mRW1 (blue, modulated (meandering) spiral wave bifurcating at HBP1 on RW1). The periods T1 (of

RW1 in the lab frame) and T2 (of mRW1 in the rotating frame) are equal (within numerical accuracy), and

also the speeds s1 (of RW1) and s2 (of mRW1, in the average sense) agree. Bottom: quotients of periods.

(b) snapshots from RW1/pt15, and contours u1 = u2 = 0.1, used to define the spiral tip in (c,d). (c) top:

tip paths for mRW1/pt5 in rotating frame (left) and lab frame (right); bottom: time series at (x, y) = (0, 0)

(black) and (x, y) = (1, 0) (blue), illustrating that the modulation acts near the tip. (d) analogous data

from mRW1/pt25, and additionally the 20 largest multipliers. (e) continuation of rw1/pt15 to δ = 0.1, and

illustration of the typical spiral wave spectrum: 500 smallest eigenvalues (middle) and zoom near imaginary

axis (right); s ≈ 3.04.

(ρ, φ), the linearization around uRW on the infinite plane reads

Lu = D(∂2
ρu+

1

ρ
∂ρu+

1

ρ2
∂2
φu) + s∂φu+ ∂uf(uRW(ρ, φ), λ)u, (6.21)

where following for instance [SS07] we used the shorthand D∆u for the diffusion terms with diffusion

matrix D, and f for the remaining terms (without spatial derivatives). If we then let ρ → ∞ in the

eigenvalue problem Lu = µu we formally obtain

D∂2
ρu+ s∂φu+ ∂uf(uRW(ρ, φ), λ)u = µu, (6.22)

and if (u, µ) is an eigenpair, so is (uei`φ, µ + is`), for each s ∈ Z. This formal computation for the

essential spectrum is explained in more detail in [SS06, WB06, SS07] and the references therein, where

moreover it is explained that the eigenvalues on large but finite domains accumulate near the so called

45

absolute spectrum, and how the (formal) order O(1/ρ) and O(1/ρ2) terms in (6.21) may generate

isolated point spectrum. c

6.4 Extensions: fixed period T , and non–autonomous cases

All our examples so far deal with the autonomous case M∂tu = −G(u) with no explicit time depen-

dence of G, and with a free period T which is computed as a part of the solution. In the demo cglext

we explain how to modify the setup to

• treat an explicit t–dependence of G, and/or

• free an additional parameter to deal with a fixed period T .

This also includes the option to compute and continue POs that are not generated in a Hopf bifurcation

via the function poiniguess. For non–autonomous problems, we may also expect that we should

drop the temporal phase condition (t–PC) (A.6). In any case, we need to have n equations in n + 1

unknowns, where different combinations are possible:

• Fixing the period T (to the forcing period) and dropping the t–PC requires one free parameter

λ, and length(p.hopf.ilam)=p.hopf.nqh (number of aux. parameters=number of aux. equa-

tions), with nqh=0 the simplest case.

• If we keep the t–PC but fix T , then we need to free an additional parameter a, i.e., need

length(p.hopf.ilam)=p.hopf.nqh+1.

To illustrate these setups we modify the cGL equation (2.1), in 1D, first to

∂tu = ∂2
xu+ (r + iν)u− (c3 + iµ)|u|2u− c5(t, x)|u|4u, u = u(t, x) ∈ C, (6.23)

where, initially, (ν, µ, c3) = (1, 1,−1), r is the initial bifurcation parameter, and the 5th order coefficient

c5 may depend on t and x. Concretely, we use

c5 = c∗5 + α tanh(10((t− βT)modT)) sinx, (6.24)

where α, β are additional constants which we put into par(8) and par(9), respectively. This essen-

tially corresponds to a step function at t = βT (and t = T), allowing to deal with a free T .

For (6.23) with the multiplicative forcing (6.24) we still have the trivial branch u ≡ 0 for all α,

and we can consider POs generated in Hopf–bifurcations from u ≡ 0. We mostly continue these POs

including the PC generated at bifurcation, and then with either free T , or with fixed T (= 2π, generated

at bifurcation) and then free ν. Indeed, for (6.23) with the forcing (6.24) we still have continua of

(approximately) “time–shifted” POs: a different phase at bifurcation yields a different action of the

forcing, but this effect is small at small amplitude, and altogether also at larger amplitude a small

phase shift yields a slightly different solution (including a different ν or T). Thus we have continua

of solutions parameterized by phase, and if desired it is possible to keep the phase condition (A.6).

Relatedly, (6.23) has enough freedom to be quite insensitive wrt initial guesses for POs, i.e., almost

any somewhat reasonable initial guess for a PO yields a PO via Newton iteration. Additionally, to

check the setup with auxiliary equations and variables, we also treat (6.23) with pBCs, such that for

SWs we need a PC in x.

As a second version, we consider the additive forcing

∂tu = ∂2
xu+ (r + iν)u− (c3 + iµ)|u|2u+ c5(1 + i) cos(t) cos(δx), (6.25)

46

such that for c5 6= 0 the trivial branch u ≡ 0 is lost. The factor (1 + i) in the forcing means that it

acts the same way in both components of u = u1 + iu2. For δ = 0 and c5 6= 0 we can still get POs by

simple guesses and Newton loops, where we need to drop the PC. For δ 6= 0 we did not succeed to get

POs for c5 6= 0 from guessing, and thus proceed by first computing Hopf–orbits for c5 = 0 and then

continuing these in c5.

Table 8 shows the new/modified files in cglext, and Listings 30–33 show the some implementation

details for (6.23), while the analogous functions fofu2.m and nodalf2 for (6.25) are quite similar.

Table 8: Selected scripts and functions in hopfdemos/cglext (cGLinit and oosetfemops as before)

file purpose,remarks
cmds1a (6.23) with NBCs and fixed T , t–PC, and free ν.
cmds1b (6.23) with NBCs, free T , hence no free aux variables.
cmds2 (6.23) with pBCs (hence an x–PC for SWs), fixed T , free ν
cmds3a (6.25), no t–PC, x–independent forcing, initial POs can be ’guessed’.
cmds3b (6.25), no t–PC, x–dependent forcing, initial POs via Hopf bifurcation for c5 = 0.
sG, fofu rhs and forcing function for (6.23), fofu called in nodalf and sGjac.
sG2, fofu2 rhs and forcing function for (6.25).

6.4.1 Multiplicative forcing

For (6.23) we compute POs with fixed T = 2π and with keeping the t–PC. Thus we free ν by

setting p.hopf.ilam=2, and fix T by setting p.hopf.freeT=0. This flags pde2path to remove T

from the list of unknowns, and the column containing ∂TG from the Jacobian A, see (A.10). For

the case of POs from p=hoswibra(...,aux), p.hopf.freeT=0 should be switched on by setting

aux.freeT=0, see Listing 32. For the case of POs from poiniguess, this can similarly be done by

setting p.hopf.freeT=0 by hand, see Listing 33. Independent of whether T is free or not, to code

a time–dependent G, we can access p.t (and p.T) set in the Hopf interface functions hosrhs and

hosjac, see Listing 30 for an example.

Figure 19 shows sample results from cmds1a for (6.23) with (c3, µ, c
∗
5, α, β) = (−1, 0.1, 1, 0.5, 0.5)

on Ω = (−π, π) with NBCs, with as usual r as primary continuation parameter. We compute the

first two bifurcating PO branches (black and red) via hoswibra from the trivial branch, and the

third (blue) by poiniguess at finite amplitude. The results for free T (and fixed ν) in cmds1b are

analogous, and therefore not plotted here.

function f=fofu(p,u) % forcing function , using:

% p.T=period (as set in hosrhs.m) and

% p.t=current time (normalized to (0,1))

% with error catching for steady problem (or if forcing pars are not set)

par=u(p.nu+1:end);

try; pa=par(8); T=p.T; t=T*p.t; tc=par(9); catch; pa=0; T=0; t=0; tc=0; end

x=getpte(p); n=p.nu/2; x=x(1:n) ’; f=pa*tanh (10*(t-tc*T))*sin(x);

Listing 30: cglext/fofu.m, using the current period T and the current time t as set into p.T and p.t in
the interface function hosrhs for calling sG for PO continuation.

function f=nodalf(p,u) % ’nonlinearity ’ for cGL (everything but diffusion)

n=p.nu/2; u1=u(1:n); u2=u(n+1:2*n); par=u(p.nu+1:end); % extract fields

r=par(1); nu=par(2); mu=par(3); c3=par(4); c5=par(5); % and parameters

ua=u1.^2+u2.^2; % aux variable |u|^2

47

(a) BDs, max and ν over r (b) sample solutions

0 0.5 1 1.5

r

0

0.5

1

1.5

m
a
x
(u

)

20

20 20

0 0.5 1 1.5

r

1

1.05

1.1

1.15

1.2

20

20

20

Figure 19: Sample outputs from cmds1a.m, (6.23) with NBCs, α = β = 0.5, fixed period T = 2π with ν

as free parameter. First (black, n1) and second (n2, red) Hopf branches obtained via hoswibra, and third

branch (n3, blue) obtained from poiniguess; sample solutions in (b).

c5=c5+fofu(p,u); % t-(and x)-dependent perturbation of c5;

f1=r*u1-nu*u2-ua.*(c3*u1 -mu*u2)-c5.*ua .^2.*u1;

f2=r*u2+nu*u1-ua.*(c3*u2+mu*u1)-c5.*ua .^2.*u2;

f=[f1;f2];

Listing 31: cglext/nodalf.m, ’nonlinearity’ in (6.23), calling fofu in l5.

%% bifs at HBP1 and 2

figure (2); clf; aux =[]; aux.dlam =0; aux.tl=40; ds =0.1; dir=’0a’; aux.freeT =0;

for i=1:2

hp=[’hpt’ mat2str(i)]; ndir=[’sw’ mat2str(i)];

p=hoswibra(dir ,hp,ds ,4,ndir ,aux); p.nc.dsmax =0.4;

p=belon(p,2); p.hopf.ilam =2; p=cont(p,20); % free nu and go

end

Listing 32: Selection from cglext/cmds1a.m: Branch switching to the 1st Hopf orbit, fixing T = 2π to the
value computed at bifurcation, and instead freeing ν.

%% use poiniguess

p=loadp(’0a’,’pt0’,’sw3’); % load some steady point (for discr.data)

nu=p.nu; p.u(nu+1) =0.5; % reset some parameter as desired

t=linspace (0,2*pi ,40); ia1 =0.0; ia2 =0.1;% create guesses for IC

x=getpte(p); x=x’; uv=[cos(x);cos(x)]; p.u(p.nu+1)=1; % an x-dependent guess

tl=length(t); u=zeros(nu ,tl);

for i=1:tl; u(:,i)=ia1+ia2*cos(t(i)+1)*uv; end

aux =[]; aux.ds =0.1; p=poiniguess(p,t,u,aux); p.sol.restart =0; p.sw.verb =0;

p.hopf.freeT =0; p.hopf.ilam =2; p=belon(p,2); p=cont(p,21); % fix T, free nu, go

Listing 33: 2nd selection from cglext/cmds1a.m, here using poiniguess to go to the third branch, again
with fixed T = 2π and free ν.

Figure 20 shows analogous sample results from cmds2 where instead of NBCs we use pBCs. The

main difference is that now the second HBP is double, and for α = 0 there bifurcate TWs and

SWs, cf. §6.1.1. Under the multiplicative forcing, the TWs (blue branch) become modulated TWs.

Moreover, although the forcing in principle breaks the translational invariance in x for the SWs (red

branch) the continuation is more robust by keeping the x–PC as in (5.8b). At the end of cmds2.m we

again use poiniguess to compute PO branches from suitable initial guesses.

48

(a) BDs, max and ν over r (c) sample solutions

0 0.5 1 1.5

r

0

0.5

1

1.5

m
a
x
(u

)

20
20

20

0 0.5 1 1.5

r

1

1.05

1.1

1.15

1.2

20

20

20

Figure 20: Sample outputs from cmds2.m, like Fig. 19 but with with pBCs. Consequently, the 2nd HP is

double with standing waves and (modulated) TWs bifurcating.

6.4.2 Additive forcing

Figures 21 and 22 show sample results for the additive forcing (6.25). In Fig. 21, with x-independent

forcing, we obtain a first PO at (r, c5) = (0.5, 0.5) via poiniguess with initial guess u ≡ sin(t+φ)(1+i)

where φ can be chosen rather arbitrarily, e.g., φ = 0. Fixing T = 2π and dropping the t–PC, the

Newton loop then depending on φ converges to one of two spatially homogeneous POs, while with

the t–PC switched on the Newton loop does not converge. Subsequently continuing in r to r = 1

(see (a)), and then switching to continuation in c5 we get the bifurcation diagram in (b), with sample

time-series of the spatially homogeneous solutions given in (c). Due to the u 7→ −u symmetry of

the (unforced) cGL (6.25), we altogether have the symmetry (u, c5) 7→ −(u, c5) and hence restrict to

positive c5. The spatially homogeneous PO starts out unstably but becomes stable at larger amplitude,

and there are several pitchfork bifurcations to (unstable) x–dependent POs (see (d) for a sample),

where the branches form closed loops between BPs on the homogeneous branch, and show further

2ndary bifurcations.

(a) (b) (c) (d)

0.6 1 1.4 1.8

c
5

1

1.5

2

2.5

m
a
x
(u

)

0

70

180

5

Figure 21: Sample outputs from cmds3a.m. (6.25) with NBCs, fixed period T = 2π, no t–PC, and δ = 0

(x–homogeneous forcing). Initial PO via poiniguess with (r, c5) = (0.5, 0.), then continuation to r = 1 (see

(a)), and subsequently continuation in c5 (b). (c) sample plots.

For δ = 1 and c5 6= 0 we were not able to find POs from simple initial guesses. Thus, in cmds3b

we first set c5 = 0 and compute POs via Hopf bifurcation from u ≡ 0 with fixed T = 2π and free ν.

Then switching to continuation in c5 on the first (spatially homogeneous) and second (sin(x) type)

Hopf branches at r = 0.11 and r = 0.35, respectively, we obtain the red (c1) and blue (c2) branches in

49

Fig. 22(a), with sample plots in (b). As expected, the c5(1 + i) cos(t) cos(x) forcing becomes dominant

with increasing c5.

(a) (b)

0 0.5 1

c
5

0.65

0.7

0.75

0.8

0.85

m
a
x
(u

) 10
10

20
30

Figure 22: Sample outputs from cmds3b.m, (6.25) with forcing c5(1 + i) cos(t) cos(x). We first let c5 = 0 and

continue the first two bifurcating Hopf branches in r, and then switch to continuation in c5 at r = 0.11 (c1,

red) and r = 0.35 (c2, blue), respectively.

A Some background and formulas

For details and background on the basic algorithms for Hopf branch point (HBP) detection and lo-

calization, branch–switching to and continuation of Hopf orbits, and Floquet multiplier computations

we refer to [Uec19]. However, in §A.1 we first briefly repeat the pertinent formulas that are imple-

mented in pde2path, including the augmented systems for Hopf computations with constraints. We

focus on the arclength parametrization setting (p.sw.para=4), which is more convenient and robust

than the ’natural parametrization’ (p.sw.para=3). In Appendix A.2 we then give the formulas used

for branch–switching as multipliers go through ±1. We mix the presentation of formulas with their

pde2path implementation, and in §B we give an overview of the used data structures and functions.

A.1 Basics

First of all, the detection of Hopf bifurcation points (HBPs) requires the p.sw.bifcheck=2 setting
[Uec19, §2.1], which is essentially controlled as follows:

p.nc.eigref(1:ne) contains shifts near which eigenvalues are computed; guesses for these shifts

can be obtained via initeig. However, except for §(3), here we use p.nc.eigref=0.)
(A.1)

A bisection for localization of a possible HBP is started if |Reµ| < p.nc.mu1 for the eigenvalue with

the smallest abs. real part, and a HBP is accepted if |Reµ| < p.nc.mu2 at the end of the bisection.
(A.2)

The default branch switching hoswibra to a Hopf branch generates

λ = λH + δsδλ u(t) = u0 + 2αδs<(e−iωH tΨ), (A.3)

as an initial guess for a periodic solution of (1.3) with period near 2π/ω. Here Ψ is the (complex)

eigenvector associated to iωH , and δλ, α can be computed from the normal form

0 = r

[
µ′r(λH)(λ− λH) + c1|r|2

]
. (A.4)

50

of the bifurcation equation on the center manifold, see [Uec19, §2.2]. After the coefficients δλ and α

in (A.3) are computed (in hogetnf), δs is chosen in such a way that the initial step length is ds in

the norm (A.8) below. However, the computation of δλ is currently only implemented for semilinear

systems, i.e., in FEM form Mu̇ = Ku − Mf(u), and even then is often not very reliable. Thus,

hogetnf can be skipped by calling hoswibra(...,aux) with aux.dlam set to some value, where

usually aux.dlam=0 is the best choice.

To compute Hopf orbits, after rescaling t 7→ Tt with unknown period T , the time evolution and

periodicity condition for u read

Mu̇ = −TG(u, λ), u(·, 0) = u(·, 1), (A.5)

and the time-translational phase condition and arclength equation read

φ := ξφ

∫ 1

0

〈u(t), u̇0(t)〉 dt
!

= 0, (A.6)

ψ := ξH

m∑
j=1

〈u(tj)−u0(tj), u
′
0(tj)〉Ω + (1−ξH)

[
wT (T−T0)T ′0 + (1−wT)(λ−λ0)λ′0

]
−ds

!
= 0, (A.7)

where T0, λ0 and u0 are from the previous step, ξH, wT are weights, ′ denotes differentiation wrt

arclength, and 〈u, v〉Ω stands for
∫

Ω
〈u(x), v(x)〉 dx, with 〈a, b〉 the standard RN scalar product.9

Numerically, we use 〈u, v〉Ω = 〈Mu, v〉, where M is the mass matrix belonging to the FEM mesh. The

steplength is ds in the weighted norm

‖(u, T, λ)‖ξ =

√√√√ξH

(
m∑
j=1

‖u(tj)‖2
2

)
+ (1− ξH)

[
wTT 2 + (1− wT)λ2

]
. (A.8)

In (A.6), ξφ with standard setting ξφ = 10 (p.hopf.pcfac, see Appendix B) is another weight,

which can be helpful to balance the Jacobian A, see (A.10). To improve convergence of Newton loops,

it sometimes turns out to be useful to set ξφ to somewhat larger values. Also, while u̇0 in (A.6) is

in principle available from Mu̇0 = −TG(u0, λ0) (which is used for p.hopf.y0dsw=0, it often appears

more robust to explicitly approximate u̇0 via finite differences, for which we set p.hopf.y0dsw=2.

Finally, for a system with nH Hopf constraints QH(u) = 0, and hence nH additional free parameters

a ∈ RnH , we also add wa 〈a− a0, a
′〉 to ψ, where wa is a weight for the auxiliary parameters a.

Letting U = (u, T, λ, a), and writing G(U) = 0 for (A.5) (see also (A.12)), in each continuation

step we need to solve

H(U) :=

G(U)

φ(u)

ψ(U)

QH(U)

 !
=

0

0

0

0

 ∈ Rmnu+2+nH , (A.9)

where m is the number of time slices tj, j = 1, . . . ,m, nu the number of PDE unknowns at each time

slice, and nH =: p.hopf.nqh is the number of Hopf constraints (encoded in p.hopf.qfh). To solve

9By default (p.hopf.y0dsw=2), u̇0 in (A.6) is evaluated (in sety0dot) by 2nd order finite differences; alternatively,
p.hopf.y0dsw=1 means first order FD, and p.hopf.y0dsw=0 replaces u̇0 by Mu̇0 = −TG(u0, λ0).

51

(A.9) we use Newton’s method, i.e.,

U j+1=U j−A(U j)−1H(U j), A=

∂uG ∂TG ∂λG ∂aG
∂uφ 0 0 0

ξHτu (1−ξH)wT τT (1−ξH)(1−wT)τλ waτa

∂uQH ∂TQH ∂λQ ∂aQH

 , (A.10)

where of course we never form A−1 but instead use p.fuha.blss to solve linear systems of type

AU = b. These systems are of bordered type, and thus it is often advantageous to use bordered

system solvers, see [UW17]. For the case of POs with fixed T (p.hopf.freeT=0), the second column

of A in (A.10) is deleted, and consequently one additional parameter a must be freed, see §6.4 and

Remark A.1b).

For the time discretization we have

u = (u1, . . . , um) = (u(t1), u(t2), . . . , u(tm)), (A.11)

(m time slices, stored in p.hopf.y(1:p.nu,1:m)),

where um = u1 is redundant but convenient. To assemble G in (A.5) we use modifications of TOM,

yielding, with hj = tj − tj−1 and u0 := um−1,

(G(u))j = −h−1
j−1M(uj − uj−1)− 1

2
T (G(uj) +G(uj−1)), Gm(u) = um − u1. (A.12)

The Jacobian is ∂uG = A1, where we set, as it is also used for the Floquet multipliers with free γ (see

[Uec19, §2.4] and §A.2),

Aγ =

M1 0 0 0 . . . −H1 0

−H2 M2 0 0 . . . 0 0

0 −H3 M3 0 . . . 0 0
... . . .

.
...

...

0
. 0 0

0 0 −Hm−1 Mm−1 0

−γ I 0 0 I

, (A.13)

where Mj = −h−1
j−1M −

1

2
T∂uG(uj), Hj = −h−1

j−1M +
1

2
T∂uG(uj−1), and I is the nu × nu identity

matrix.10 The Jacobians ∂uG ∈ Rnu×nu in Mj, Hj are computed as for steady state problems, e.g., via

p.fuha.sGjac, or by numjac if p.sw.jac=0 (but still locally in time). The main interfaces between

the TOM functions and the standard pde2path setup for steady problems are the functions

hosrhs and hosjac, (A.14)

10In (A.12) and (A.13) we assume that M is regular, i.e., (A.5) does not contain algebraic constraints as for instance
for the 2nd order system formulation of the KS in kspbc2; see also Remark A.1 for this case.

52

which essentially call the pde2path functions resi and getGu at each time slice. To deal with non-

autonomous problems, they also pass the time t ∈ [0, 1] and the period T via p.t and p.T, respectively,

such that these can be used in, e.g., sG and sGjac, see, e.g., fofu in §6.4.

For QH(u(·, ·), λ, w, a) = 0, the user must provide a function handle p.hopf.qfh, similar to 0 =

Q(u, λ, w) = p.fuha.qf for the steady case. Moreover, when switching to a Hopf branch (and if

p.nc.nq was greater 0 for the steady continuation), the user has to drop the stationary constraints,

i.e., reset p.nc.nq=0 and p.nc.ilam=p.nc.ilam(1) to just the primary active parameter, while the

other active parameters a ∈ RnH for QH should be set in p.hopf.ilam ∈ NnH , which now acts as a

pointer to these ’secondary’ active parameters. Finally, the user must provide a function handle in

p.hopf.qfhjac to a function that returns ∂uQH from the last line in (A.10). On the other hand,

∂TG, ∂λG, ∂aG, and ∂TQH , ∂λQH and ∂aQH in (A.10) are cheap from numerical differentiation and

hence taken care of automatically.

Remark A.1. a) If (A.5) contains algebraic constraint components as in kspbc2, then we modify

(A.12). For instance, if the second component is algebraic, then we (automatically, in tomassemF and

tomassempbc) set (G(u)2)j = −1
2
TG(uj), and accordingly also modify (A.13).

b) For non–autonomous problems it may be useful or necessary to drop the t–PC (A.6), which is

flagged by p.hopf.pc=0 (default=1). Then we must also decrease the number of unknowns by 1, for

instance by fixing T via p.hopf.freeT=0, or, in case that nqh> 0, by choosing nqh-1 free auxiliary

parameters a instead of nqh many. On the other hand, as noted above, for p.hopf.freeT=0 and

p.hopf.pc=1, one additional auxiliary parameter must be free, i.e., length(p.hopf.ilam)=nqh+1.

See §6.4 for examples. c

A.2 Floquet multipliers, and bifurcation from periodic orbits

The Floquet multipliers γ of a periodic orbit uH are obtained from finding nontrivial solutions (v, γ)

of the variational boundary value problem

Mv̇(t) = −T∂uG(u(t))v(t), (A.15)

v(1) = γv(0). (A.16)

By translational invariance of (A.5), there always is the trivial multiplier γ1 = 1. Equivalently, the

multipliers γ are the eigenvalues of the monodromy matrix M(u0) = ∂uΦ(u0, T), where Φ(u0, t) is

the solution of the initial value problem (A.5) with u(0) = u0 from uH . Thus, M(u0) depends on

u0, but the multipliers γ do not. M(u0) has the eigenvalues 1, γ2, . . . , γnu , where γ2, . . . , γnu are

the multipliers of the linearized Poincaré map Π(·;u0), which maps a point ũ0 in a hyperplane Σ

through u0 and transversal to uH to its first return to Σ, see, e.g., [Kuz04, Theorem 1.6]. Thus, a

necessary condition for the bifurcation from a branch λ 7→ uH(·, λ) of periodic orbits is that at some

(uH(·, λ0), λ0), additional to the trivial multiplier γ1 = 1 there is a second multiplier γcrit = γ2 (or a

complex conjugate pair γ2,3) with |γ2| = 1, which generically leads to the following bifurcations (see,

e.g., [Sey10, Chapter 7] or [Kuz04] for more details):

(i) γ2 = 1, yields a fold of the periodic orbit, or a transcritical or pitchfork bifurcation of periodic

orbits.

(ii) γ2 = −1, yields a period–doubling bifurcation, i.e., the bifurcation of periodic orbits ũ(·;λ) with

approximately double the period, ũ(T̃ ;λ) = ũ(0;λ), T̃ (λ) ≈ 2T (λ) for λ near λ0.

(iii) γ2,3 = e±iϑ , ϑ 6= 0, π, yields a torus (or Naimark–Sacker) bifurcation, i.e., the bifurcation of

periodic orbits ũ(·, λ) with two “periods” T (λ) and T̃ (λ); if T (λ)/T̃ (λ) 6∈ Q, then R 3 t 7→ ũ(t)

53

is dense in certain tori.

Numerics for (iii) are difficult even for low dimensional ODEs, but there are various algorithms for

(i),(ii), and below we explain the simple ones so far used in pde2path. First we are interested in the

computation of the multipliers. Using the same discretization for v as for u, it follows that γ and

v = (v1, . . . , vm) have to satisfy

v1 = M−1
1 H1vm−1, v2 = M−1

2 H2v1, . . . , vm−1 = M−1
m−1Hm−1vm−2, vm = γv1, (A.17)

for some γ ∈ C. Thus, M(uj0) can be obtained from certain products involving the Mj and the Hj,

for instance11

M(u1) = M−1
1 H1M

−1
m−1Hm−1 · · ·M−1

2 H2. (A.18)

Thus, a simple way to compute the γj is to compute the product (A.18) and subsequently (a number

of) the eigenvalues of M(u1). We call this FA1 (Floquet Algorithm 1, implemented in floq), and

using

errγ1 := |γ1 − 1| (A.19)

as a measure of accuracy we find that this works fast and accurately for our dissipative examples.

Typically errγ1 < 10−10, although at larger amplitudes of uH , and if there are large multipliers, this

may go up to errγ1 ∼ 10−8, which is the (default) tolerance we require for the computation of uH
itself. Thus, in the software we give a warning if errγ1 exceeds a certain tolerance tolfl. However, for

the optimal control example in §4, where we naturally have multipliers γj with |γj| > 1030 and larger,

FA1 completely fails to compute any meaningful multipliers.

More generally, in for instance [FJ91, Lus01] it is explained that methods based directly on (A.18)

• may give considerable numerical errors, in particular if there are both, very small and very large

multipliers γj;

• discard much useful information, for instance eigenvectors ofM(ul), l 6= m−1, which are useful

for branch switching.

As an alternative, [Lus01] suggests to use a periodic Schur decomposition [BGVD92] to compute the

multipliers (and subsequently pertinent eigenvectors), and gives examples that in certain cases this

gives much better accuracy, according to (A.19). See also [Kre01, Kre06] for similar ideas and results.

We thus provide an algorithm FA2 (Floquet Algorithm 2, implemented in floqps), which, based on

pqzschur from [Kre01], computes a periodic Schur decomposition of the matrices involved in (A.18),

from which we immediately obtain the multipliers, see [Uec19] for details.

Remark A.2. Also for nH > 0, the computation of Floquet multipliers is based on (A.13), i.e., ignores

the Hopf-constraints QH . Since these constraints are typically used to eliminate neutral directions,

ignoring these typically leads to Floquet multipliers close to 1, additional to the trivial multiplier 1

from (time–) translational invariance. This may lead to wrong stability assessments of periodic orbits

(see [RU17, §4] for an example), which however usually can identified by suitable inspection of the

multipliers. c

Here, additional to [Uec19], we give the (somewhat preliminary, see Remark 3.1) algorithms for

branch switching for the case of γcrit = ±1. First, the (simple) localization of a BP is done in

11In [Uec19, (2.40)] we used M(um−1), but M(u1) seems more convenient for branch–switching

54

hobifdetec.m via bisection. For the case γcrit = 1 with associated eigenvector v1 (i.e., γcrit ≈ 1 but

not equal to the trivial multiplier, and hence v1 6= ∂tuH(0)) we then use (A.18), i.e.,

v2 = M−1
2 H2v1, . . . , vm−1 = M−1

m−1Hm−1vm−2, (A.20)

and additionally vm = v1, to obtain a tangent predictor V = (v1, v2, . . . , vm−1|vm) for the bifurcating

branch.

For the case γcrit = −1 we double the period T , i.e., set (recall that t1 = 0)

tnew =
1

2
(t1, t2, t3, . . . , tm−1, 1 + t1, 1 + t2, . . . , 1 + tm−1), (A.21)

redefine m = 2m, and use (V,−V |v1) with V from A.20 as predictor. The pertinent function is

poswibra.m, which, besides the orbit and branch point, and the new directory and the (initial) step

length ds, can take some additional arguments aux. For instance, aux.sw=1 forces poswibra to take

γcrit from near 1, while aux.sw=-1 takes γcrit from near −1. This is sometimes necessary because there

may be γj close to both, ±1, and the bisection for the localization does not distinguish these (or even

multipliers elsewhere near the unit circle).

B Data structure and function overview

The Hopf setting naturally reuses and extends the stationary pde2path setting explained in, e.g.,

[dWDR+20]. As usual, here we assume that the problem is described by the struct p, and for conve-

nience list the main subfields of p in Table 9.

Table 9: Main fields in the structure p for steady problems, see [dWDR+20] for more details.

field purpose field purpose

fuha function handles, e.g., fuha.G, . . . nc numerical controls, e.g., nc.tol, . . .
sw switches such as sw.bifcheck,. . . sol values/fields calculated at runtime
pdeo OOPDE data if OOPDE is used mesh mesh data (if the pdetoolbox is used)
plot switches and controls for plotting file switches etc for file output
bel controls for lssbel (bordered elimination) ilup controls for lssAMG (ilupack parameters)

usrlam vector of user set target values for the primary parameter, default usrlam=[];
mat problem matrices, in general data that is not saved to file

For the continuation of time-periodic orbits, the field p.hopf contains the pertinent data; it is

typically created and filled by calling p=hoswibra(..). This inter alia calls p=hostanparam(p,aux),

which can be used as a reference for the default values of the Hopf parameters. The unconstrained Hopf

setting does not need any user setup additional to the functions such as p.fuha.sG, p.fuha.sGjac

already needed for stationary problems. In case of Hopf constraints, the user has to provide two

function handles in p.hopf.qfh and p.hopf.qfhder to functions which compute QH from (A.9) and

the last row of A from (A.10), respectively. The only changes of the core p2p library concern some

queries whether we consider a Hopf problem, in which case basic routines such as cont call a Hopf

version, i.e., hocont. Table 10 gives an overview of p.hopf, and Table 11 lists the main Hopf orbit

related functions.

55

Table 10: Standard (and additional, at bottom) entries in p.hopf.

field purpose

y for p.sw.para=4: unknowns in the form (u = (u1, . . . , um) = (u(t1), u(t2), . . . , u(tm)),
(m time slices, y=nu ×m matrix);

for p.sw.para=3: y augmented by ỹ and T, λ ((2nu+2)×m matrix), see [Uec19].
y0d for p.sw.para=4: Mu̇0 for the phase condition (A.6), (nu ×m matrix);

for p.sw.para=3: Mu̇0(0) for the phase condition [Uec19, (36)], (2nu+2 vector).
y0dsw (for p.sw.para=4) controls how u̇0 in (A.6) is computed: 0 for using the PDE (A.5), 2 for

using FD (default).
pcfac weight for the phase condition (A.6), default=10
tau tangent, for p.sw.para=4, (mnu + 2 + nH)× 1 vector, see third line in (A.10)
ysec for p.sw.para=3, secant between two solutions (y0, T0, λ0), (y1, T1, λ1), (2nu+2)×m matrix
sec if sec=1, then use secant tau (instead of tangent) predictor for p.sw.para=4
t, T, lam time discretization vector, current period and param.value
xi,tw,qw weights for the arclength (A.7), xi=ξH, tw=wT , qw=wa;
x0i index for plotting t 7→ u(~x(x0i);
plot aux. vars to control hoplot during hocont; see the description of hoplot; default plot=[]
wn struct containing the winding number related settings for initeig
tom struct containing TOM settings, including the mass matrix M
jac switch to control assembly of ∂uG. jac=0: numerically (only recommended for testing);

jac=1: via hosjac. Note that for p.sw.jac=0 the local matrices ∂uG(u(tj)) are obtained
via numjac, but this is still much faster than using p.hopf.jac=0.

flcheck 0 to switch off multiplier-comp. during cont., 1 to use floq, 2 to use floqps

nfloq # of multipliers (of largest modulus) to compute (if flcheck=1)
fltol tolerance for multiplier γ1 (give warning if |γ1 − 1| >p.hopf.fltol)
muv1,muv2 vectors of stable and unstable multipliers, respectively
pcheck if 1, then compute residual in hoswibra (predictor check)
bisec # of bisection used for BP localizations

Additional entries in case of Hopf constraints

ilam pointer to the nQ additional active parameters in p.u(p.nu+1:end); the pointer to the
primary active parameter is still in p.nc.ilam(1).

qfh, qfhder (handles to) functions returning the Hopf constraints QH(U) and the derivatives (last lines
of H in (A.9) and A in (A.10), respectively).

spar,kwnr index of speed parameter, and spatial wave-nr for TW continuation, set in twswibra

Table 11: Overview of main functions related to Hopf bifurcations and periodic orbits; see p2phelp

for argument lists and more comments.

name purpose, remarks

hoswibra branch switching at Hopf bifurcation point, see comments below
twswibra branch switching at Hopf bifurcation point to Traveling Wave branch (which is contin-

ued as a rel.equilibrium)
hoswipar change the active continuation parameter, see also swiparf
hoplot plot the data contained in hopf.y. Space-time plot in 1D; in 2D and 3D: snapshots at

(roughly) t = 0, t = T/4, t = T/2 and t = 3T/4; see also hoplotf;
initeig find guess for ω1; see also initwn
floq compute p.hopf.nfloq multipliers during continuation (p.hopf.flcheck=1)
floqps use periodic Schur to compute (all) multipliers during continuation (flcheck=2)
floqap, floqpsap a posteriori versions of floq and floqps, respectively
hobra standard–setting for p.fuha.outfu (data on branch), template for adaption to a given

problem

56

hostanufu standard function called after each continuation step
plotfloq plot previously computed multipliers

hpcontini init Hopf point continuation
hpcontexit exit Hopf point continuation
hpjaccheck check user implementation of (3.6) against finite differences
hploc use extended system (3.3) for Hopf point localization
hobifdetec detect bifurcations from Hopf orbits, and use bisection for localization, based on mul-

tipliers
poswibra branch switching from Hopf orbits
hobifpred compute predictor for branch switching from Hopf orbits
hotintxs time integrate (1.3) from the data contained in p.hopf and u0, with output of ‖u(t)−

u0‖∞, and saving u(t) to disk at specified values
tintplot*d plot output of hotintxs; x−t–plots for *=1, else snapshots at specified times
hopftref refine the t-mesh in the arclength setting at user specified time t∗

hogradinf convenience function returning the time t∗ where ‖∂tu(·, t)‖∞ is maximal; may be useful
for hopftref.

initwn init vectors for computation of initial guess for spectral shifts ωj
hogetnf compute initial guesses for dlam, al from the normal form coefficients of bifurcating

Hopf branches, see [Uec19, (16)]
hocont main continuation routine; called by cont if p.sol.ptype>2
hostanparam set standard parameters
hostanopt set standard options for hopf computations
hoinistep perform 2 initial steps and compute secant, used if p.sw.para=3
honloopext,honloop the arclength Newton loop, and the Newton loop with fixed λ
sety0dot compute u̇0 for the phase condition (A.6)
tomsol use TOM to compute periodic orbit in p.sw.para=3 setting.
tomassemG use TOM to assemble G, see [Uec19, (26)]; see also tomassem, tomassempbc

gethoA put together the extended Jacobian A from [Uec19, (27)]
hopc the phase condition φ from[Uec19, (19)], and ∂uφ.
arc2tom, tom2arc convert arclength data to tomsol data, e.g., to call tomsol for mesh adaptation. tom2arc

to go back.
ulamcheckho check for and compute solutions at user specified values in p.usrlam
poiniguess generate initial guess for periodic orbit continuation based on hopf data structures,

but without need of a HBP. Alternative to hoswibra, see §6.4.

hosrhs,hosrhsjac interfaces to p.fuha.G and p.fuha.Gjac at fixed t, internal functions called by
tomassempbc, together with hodummybc

horhs,hojac similar to hosrhs, horhsjac, for p.sw.para=3, see also hobc and hobcjac

Besides cont, the functions initeig, hoswibra, poswiba, hoplot, twswibra, floqap, floqplot,

hotintxs, tintplot*d, and hopftref are most likely to be called directly by the user, and hobra

(the branch data) and hostanufu (called after each continuation step) are likely to be adapted by the

user. As usual, all functions in Table 11 can be most easily overloaded by copying them to the given

problem directory and modifying them there.

In p=hoswibra(dir,fname,ds,para,varargin), the auxiliary argument aux=varargin{2}
(varargin{1} is the new directory) can for instance have the following fields:

• aux.tl=30: number of (equally spaced) initial mesh-points in t ∈ [0, 1] (might be adaptively

refined by TOM for p.sw.para=3, or via hopftref or uhopftref for p.sw.para=4).

• aux.hodel=1e-4: used for the finite differences in hogetnf.

• aux.al, aux.dlam (no preset): these can be used to pass a guess for α and δλ in (A.3) and

thus circumvent hogetnf; useful for quasilinear problems and for problems with constraints (for

57

which hogetnf will not work), or more generally when the computation of α, δλ via hogetnf

seems to give unreliable results.

• aux.z: The coefficients z1, . . . , zm in the ad hoc modification (6.19) of (A.3) used for Hopf points

of higher multiplicity m.

For the other functions listed above we refer to the m-files for description of their arguments, and

to the demo directories for examples of usage and customization.

References

[Bar95] D. Barkley. Spiral meandering. In Chemical Waves and Patterns, edited by R. Kapral and K.
Showalter. Kluwer, 1995.

[BGVD92] A. Bojanczyk, G.H. Golub, and P. Van Dooren. The periodic Schur decomposition; algorithm
and applications. In Proc. SPIE Conference, Volume 1770, pages 31–42. 1992.

[BKT90] D. Barkley, M. Kness, and L. S. Tuckerman. Spiral-wave dynamics in a simple model of excitable
media: the transition from simple to compound rotation. Phys. Rev. A (3), 42(4):2489–2491,
1990.

[Bol11] M. Bollhöfer. ILUPACK V2.4, www.icm.tu-bs.de/~bolle/ilupack/, 2011.

[BPS01] W.J. Beyn, Th. Pampel, and W. Semmler. Dynamic optimization and Skiba sets in economic
examples. Optimal Control Applications and Methods, 22(5–6):251–280, 2001.

[BvVF17] P.-L. Buono, L. van Veen, and E. Frawley. Hidden symmetry in a Kuramoto-Sivashinsky initial-
boundary value problem. Internat. J. Bifur. Chaos Appl. Sci. Engrg., 27(9), 2017.

[DRUW14] T. Dohnal, J.D.M. Rademacher, H. Uecker, and D. Wetzel. pde2path 2.0. In H. Ecker, A. Steindl,
and S. Jakubek, editors, ENOC 2014 - Proceedings of 8th European Nonlinear Dynamics Con-
ference, ISBN: 978-3-200-03433-4, 2014.

[DU17] T. Dohnal and H. Uecker. Periodic boundary conditions in pde2path, 2017.

[dW17] H. de Witt. Fold continuation in systems – a pde2path tutorial, 2017.

[dWDR+20] H. de Witt, T. Dohnal, J.D.M. Rademacher, H. Uecker, and D. Wetzel. pde2path - Quickstart
guide and reference card, 2020.

[dWU19] H. de Witt and H. Uecker. Infinite time–horizon spatially distributed optimal control problems
with pde2path – algorithms and tutorial examples, arxiv:1912.11135, 2019.

[FJ91] Th. F. Fairgrieve and A. D. Jepson. O. K. Floquet multipliers. SIAM J. Numer. Anal.,
28(5):1446–1462, 1991.

[GCF+08] D. Grass, J.P. Caulkins, G. Feichtinger, G. Tragler, and D.A. Behrens. Optimal Control of
Nonlinear Processes: With Applications in Drugs, Corruption, and Terror. Springer, 2008.

[GKS00] M. Golubitsky, E. Knobloch, and I. Stewart. Target patterns and spirals in planar reaction-
diffusion systems. J. Nonlinear Sci., 10(3):333–354, 2000.

[Gov00] W. Govaerts. Numerical methods for bifurcations of dynamical equilibria. SIAM, 2000.

[GS02] M. Golubitsky and I. Stewart. The symmetry perspective. Birkhäuser, Basel, 2002.

[GU17] D. Grass and H. Uecker. Optimal management and spatial patterns in a distributed shallow
lake model. Electr. J. Differential Equations, 2017(1):1–21, 2017.

58

www.icm.tu-bs.de/~bolle/ilupack/

[Hoy06] R.B. Hoyle. Pattern formation. Cambridge University Press., 2006.

[JSW89] W. Jahnke, W. E. Skaggs, and A. T. Winfree. Chemical vortex dynamics in the Belousov-
Zhabotinskii reaction and in the two-variable oregonator model. J. Phys. Chem, 93(2):740–749,
1989.

[KH81] N. Kopell and L.N. Howard. Target pattern and spiral solutions to reaction-diffusion equations
with more than one space dimension. Advances in Applied Mathematics, 2(4):417–449, 1981.

[Kie79] H. Kielhöfer. Hopf bifurcation at multiple eigenvalues. Arch. Rational Mech. Anal., 69(1):53–83,
1979.

[Kre01] D. Kressner. An efficient and reliable implementation of the periodic qz algorithm. In IFAC
Workshop on Periodic Control Systems. 2001.

[Kre06] D. Kressner. A periodic Krylov-Schur algorithm for large matrix products. Numer. Math.,
103(3):461–483, 2006.

[KT76] Y. Kuramoto and T. Tsuzuki. Persistent propagation of concentration waves in dissipative
media far from thermal equilibrium. Prog. Theoret. Phys., 55(2):356–369, 1976.

[Kuz04] Yu. A. Kuznetsov. Elements of applied bifurcation theory, volume 112 of Applied Mathematical
Sciences. Springer-Verlag, New York, third edition, 2004.

[Lus01] K. Lust. Improved numerical Floquet multipliers. Internat. J. Bifur. Chaos, 11(9):2389–2410,
2001.

[Mei00] Zhen Mei. Numerical bifurcation analysis for reaction-diffusion equations. Springer, 2000.

[MT04] F. Mazzia and D. Trigiante. A hybrid mesh selection strategy based on conditioning for boundary
value ODE problems. Numerical Algorithms, 36(2):169–187, 2004.

[PET94] J. Paullet, B. Ermentrout, and W. Troy. The existence of spiral waves in an oscillatory reaction-
diffusion system. SIAM J. Appl. Math., 54(5), 1994.

[RU17] J.D.M. Rademacher and H. Uecker. Symmetries, freezing, and Hopf bifurcations of modulated
traveling waves in pde2path, 2017.

[RU19] J.D.M. Rademacher and H. Uecker. The OOPDE setting of pde2path – a tutorial via some
Allen-Cahn models, 2019.

[Sch98] A. Scheel. Bifurcation to spiral waves in reaction-diffusion systems. SIAM journal on mathe-
matical analysis, 29(6):1399–1418, 1998.

[Sey10] R. Seydel. Practical bifurcation and stability analysis. 3rd ed. Springer, 2010.

[Siv77] G. Sivashinsky. Nonlinear analysis of hydrodynamic instability in laminar flames. I - Derivation
of basic equations. Acta Astronautica, 4:1177–1206, 1977.

[SN10] J. Sánchez and M. Net. On the multiple shooting continuation of periodic orbits by Newton-
Krylov methods. Internat. J. Bifur. Chaos Appl. Sci. Engrg., 20(1):43–61, 2010.

[SN16] J. Sánchez and M. Net. Numerical continuation methods for large-scale dissipative dynamical
systems. Eur. Phys. J. Special Topics, 225:2465–2486, 2016.

[SS06] B. Sandstede and A. Scheel. Curvature effects on spiral spectra: Generation of point eigenvalues
near branch points. PRE, 016217:1–8, 2006.

[SS07] B. Sandstede and A. Scheel. Period-doubling of spiral waves and defects. SIAM J. Appl. Dyn.
Syst., 6(2):494–547, 2007.

59

[SSW99] B. Sandstede, A. Scheel, and C. Wulff. Bifurcations and dynamics of spiral waves. J. Nonlinear
Sci., 9(4):439–478, 1999.

[Uec16] H. Uecker. Optimal harvesting and spatial patterns in a semi arid vegetation system. Natural
Resource Modelling, 29(2):229–258, 2016.

[Uec19] H. Uecker. Hopf bifurcation and time periodic orbits with pde2path – algorithms and applica-
tions. Comm. in Comp. Phys, 25(3):812–852, 2019.

[Uec20a] H. Uecker. Pattern formation with pde2path – a tutorial, 2020.

[Uec20b] H. Uecker. www.staff.uni-oldenburg.de/hannes.uecker/pde2path, 2020.

[UW17] H. Uecker and D. Wetzel. The pde2path linear system solvers – a tutorial, 2017.

[UWR14] H. Uecker, D. Wetzel, and J.D.M. Rademacher. pde2path – a Matlab package for continuation
and bifurcation in 2D elliptic systems. NMTMA, 7:58–106, 2014.

[WB06] P. Wheeler and D. Barkley. Computation of spiral spectra. SIADS, 5:157–177, 2006.

[Wir00] Fr. Wirl. Optimal accumulation of pollution: Existence of limit cycles for the social optimum
and the competitive equilibrium. Journal of Economic Dynamics and Control, 24(2):297–306,
2000.

[YDZE02] L. Yang, M. Dolnik, A. M. Zhabotinsky, and I. R. Epstein. Pattern formation arising from
interactions between Turing and wave instabilities. J. Chem. Phys., 117(15):7259–7265, 2002.

[YZE04] L. Yang, A. M. Zhabotinsky, and I. R. Epstein. Stable squares and other oscillatory Turing
patterns in a reaction–diffusion model. PRL, 92(19):198303–1–4, 2004.

60

www.staff.uni-oldenburg.de/hannes.uecker/pde2path

	Introduction
	The cGL equation as an introductory example: Demo cgl
	General setup
	1D
	Remarks on Floquet multipliers and time integration
	2D
	3D

	An extended Brusselator: Demo brussel
	1D
	2D

	A canonical system from optimal control: Demo pollution
	Hopf bifurcation with symmetries
	Mass conservation: Demo mass-cons
	Mass and phase constraints: Demos kspbc4 and kspbc2
	Period doubling of a breather (demo symtut/breathe)

	O(2) equivariance: traveling vs standing waves, and relative periodic orbits
	The cGL equation in boxes with pBC: demo cglpbc
	The cGL equation in a disk: demo cgldisk
	Reaction diffusion in a disk: Demo gksspirals
	Extensions: fixed period T, and non–autonomous cases

	Some background and formulas
	Basics
	Floquet multipliers, and bifurcation from periodic orbits

	Data structure and function overview

