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Abstract

We describe by means of some examples how to run pde2path on “general” right hand sides,
i.e., right hand sides not obtained from a PDE discretization by the built–in FEM of pde2path.
The examples are “PDEs” on graphs, and discretization of standard PDEs by Chebychev and
FFT based methods. For the latter we also explain a “matrix–free” setup of pde2path (not
forming Jacobians, but only using their action).
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1 Introduction

The Matlab package pde2path [UWR14, Uec19, Uec21b, Uec21a] is originally set up for numerical
continuation and bifurcation analysis of systems of PDEs of the form

Md∂tu = −G(u, λ), G(u, λ) = −∇ · (c⊗∇u) + au− b⊗∇u− f, (1)

over bounded domains Ω ⊂ Rd, d = 1, d = 2, or d = 3, (1D, 2D, 3D case), with various boundary
conditions (BCs). In (1), u = u(x, t) ∈ RN , t ≥ 0, x ∈ Ω, λ ∈ Rp is a parameter (vector), Md ∈ RN×N

is a (dynamical) mass matrix, which may be singular, and the coefficients c, a, b and f may depend on
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x, λ and u. For (1), pde2path can generate, by a few convenience calls, a finite element method (FEM)
discretization based on, e.g., OOPDE [Prü21], including the computation of the FEM (differentiation)
matrices. With these, the user can setup the (discretized) right hand side (rhs) G(u, λ), and then
compute branches of steady and time periodic solutions of (1). For details, and many demos of
numerical continuation of branches of solutions of PDEs, see the various tutorials which together with
the software and demos can be downloaded at [Uec21b].

Here we explain how to use pde2path without the built in FEM, which often only requires a
few modifications of the standard setup. As examples we choose variants of typical model problems,
namely: Allen–Cahn type of equations

∂tu = c∆u+ λu− u3, u = u(x, t) ∈ R; (2)

the (modified) Schnakenberg problem

∂tU=D∆U+F (U), U=

(
u

v

)
, F (U)=

(
−u+u2v

λ−u2v

)
+ σ(u− 1/v)2

(
1

−1

)
, (3)

with diffusion matrix D =
(

1 0
0 d

)
and parameters λ, σ as an example of a pattern forming reaction–

diffusion system; the Swift–Hohenberg equation

∂tu = −(1 + ∆)2u+ λu+ νu2 − u3, u ∈ R, (4)

as a fourth order problem. However, in contrast to the (other) tutorials at [Uec21b] we do not treat
these via FEM, but as follows:

� (2) and (3) on networks (graphs), where ∆ is replaced by the network Laplacian.
� (2) and (3) on boxes (1D and 2D) with a Chebychev spectral discretization [WR00, Tre02], and

Dirichlet BCs (DBCs) or Neumann BCs (NBCs).
� (2) and (3) on boxes (1D and 2D) with NBCs via Fourier spectral differentiation based on the

discrete cosine transform dct.1

� (2) on disks with DBCs and NBCs by mixing a Chebychev discretization in radius with a Fourier
discretization in angle.

As usual in pde2path, the rhs (and Jacobians), of (2)–(4), including the BCs where applicable, will
be encoded in functions sG (and sGjac). Using the Matlab graph class, the equations on networks
require only a few lines of coding. The main changes compared to the standard treatment of (2)–(4)
on various domains and with various BCs via the FEM concern:

� At init we need to set up (the discretization of) the spatial domain, and then in particular (in our
setting) a function oosetfemops that computes the pertinent discretized differential operators
(on networks, or based on cheb or dct) used in sG and sGjac; see also Remark 2.1.

� The default (solution) plotting in pde2path is tuned to the FEM setting. To adapt, we set
p.plot.pstyle=-1, which means that the default plotsol calls a function userplot, which in
each of the above settings can be provided quite easily.

In §2 we review the default FEM data structures and functions in pde2path, which we subsequently
modify (drop or overload) for the above problems. In §3 we start with problems on networks, which
due to the Matlab graph class (and auxiliary functions such as WattsStrogatz) require only a few
lines of code. In §4 we consider (2) and (3) via Chebychev spectral discretization. In §5 we turn
to the spectral discretization of (2) and (4) via FFT, choosing dct since NBCs are most natural for

1By a “spectral” method we mean any method based on expansion into global functions, such as (Chebychev)
polynomials or trigonometric functions, as opposed to local functions like the hat functions or splines in the FEM.
Often, the spectral methods are called pseudospectral if the basis is associated with a grid (as it inevitably is) and
hence the interpolants are band limited. See, e.g., [Boy01, Introduction].
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pattern forming systems, and in §6 we give a short summary, noting pros and cons of the methods
presented in §4 and §5 compared to the standard FEM setup. The demos coming with this tutorial
are subdirectories of pde2path/demos/modtut, see Table 1.

Table 1: Demo directories in pde2path/demos/modtut.

directory remarks

acG, schnakG (2) and (3), respectively, on graphs
ac1Dcheb (2) in 1D based on cheb with Neumann BCs
ac2DDBC, ac2DNBC (2) via cheb in 2D with DBCs and NBCs
schnak2D (3) in 2D with NBCs
ac1Dfou (2) in 1D with NBCs based on dct

sh1Dfou, sh2Dfou (4) in 1D and 2D with NBCs based on dct

sh1Dmfree, sh2Dmfree (4) in 1D and 2D with NBCs based on dct, matrix–free linear algebra
acdiscDBC, acdiskNBC (2) on disks
altfou further demos based on dct, alternative implementations
altcheb alternative implementations of ac1Dcheb and ac2DNBC which implement the

BCs more directly, which might be more easy to generalize.

2 Default data and initialization of a pde2path struct p

In the following we assume that as usual all problem data is contained in the pde2path struct p. In
the standard FEM setting (OOPDE, [Prü21]), this includes the object p.pdeo (with sub–objects fem

and grid), which provides methods to generate FEM meshes, code BCs, and ultimately assemble
FEM matrices M (mass matrix) and K (e.g., Laplacian, including the BCs). Typical initializations and
first continuation steps in the FEM setup then run as follows:

1. Call p=stanparam(p) to initialize most fields in p with default values (see source of stanparam.m
for default fields and values). Set p.sw.fem=-1 to flag the use of r=sG(p,u) and Gu=sGjac(p,u)

as rhs and Jacobian (as opposed to G, Gjac with different signatures aimed at a different type
of FEM assembly).2

2. Call a pdeo constructor, for instance p.pdeo=stanpdeo1D(p,vararg), where here and in the
following vararg stands for variable arguments.

3. In a function oosetfemops (in the current directory), use p.pdeo.assema to generate p.mat.M

(always required) and p.mat.K (and possibly further FEM matrices, e.g., for BCs).
4. Use p.mat.M and p.mat.K in a function r=sG(p,u) to encode the PDE (and the Jacobian

in Gu=sGjac(p,u)). Here, the input argument u contains the “PDE unknowns” u and the
parameters (appended at the end), and p, in particular p.mat and its subfields such as the
preassembled matrices M and K is typically useful for simple coding.

5. Initialize p.u with a first solution (or a solution guess, to be corrected in a Newton loop).
6. Call p=cont(p) to (attempt to) continue the initial solution in some parameter, including bi-

furcation detection, localization, and saving to disk.
7. The current solution is plotted during cont via calling plotsol(p), and similarly for a pos-

teriori plotting solutions (e.g., from disk). The standard behavior (controlled by the switch
p.plot.pstyle and other switches in p.plot) of plotsol is tuned to the FEM discretization.
However, if p.plot.pstyle=-1, then plotsol immediately calls a function userplot, to be
user–provided (in the Matlab–path, typically in the current directory).

2E.g. sG is the default setup for the function handle p.fuha.sG, i.e., p.fuha.sG=@sG; see Remark 2.1.
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8. Call p=swibra(dir,bpt,newdir) to attempt branch switching at branch point bpt in directory
dir; subsequently, call p=cont(p) again, with saving in newdir.

9. Perform special tasks such as fold or branch–point continuation; use plotbra(dir,pt,vararg)

to plot bifurcation diagrams, and plotsol(dir,pt,vararg) to plot sample solutions.
Steps 1,2 and 5, and a call to oosetfemops are typically combined into an init-function, for in-
stance p=acinit(p,vararg). Importantly, to save disk space, during continuation, data in p.mat

is by default not saved to disk in the standard save–function stansavefu. Thus, the function
p=loadp(dir,pt) for loading a point from disk (as in swibra in step 8, or for plotting from disk),
calls oosetfemops to restore the FEM matrices.3

When not using the built–in FEM, then obviously step 2 must first be modified (for instance
simply omitted). Next, oosetfemops from step 4 should generate p.mat.M (always) and possibly other
matrices, to be used in sG and/or sGjac. Again, this should happen in the function oosetfemops

(which may for instance only contain the command p.mat.M=speye(p.nu)) as p.mat is not saved and
instead oosetfemops is called when reloading points.

Remark 2.1 The rhs, Jacobian, and a number of further functions needed/used to run pde2path

on a problem p, are interfaced via function handles in p.fuha. For instance, you can give the
function encoding your rhs any name, e.g., myrhs, with signature r=myrhs(p,u), and then set
p.fuha.sG=@myrhs. In most demos, we simply keep the “standard names” sG and sGjac and en-
code these in the respective demo directory. For many handles in p.fuha there are standard choices,
e.g., p.fuha.savefu=@stansavefu, which we very seldomly modify. Functions for which the “default
choice” is more likely to be modified include, e.g.,4

� p.fuha.outfu=@stanbra; % signature out=stanbra(p,u), branch output;
� p.fuha.lss=@lss; % signature [x,p]=lss(A,b,p), linear systems solver x = A−1b.

Other options include, e.g., lssbel (bordered elimination) and lssAMG (preconditioned GMRES
using ilupack [Bol11]).

For downward compatibility (since it was introduced rather recently), there is an optional handle
� p.fuha.setops. If p.sw.sfem=±1, and p.fuha.setops is set to, e.g., mysetops (with signature
p=mysetops(p)), then mysetops is called by setfemops, otherwise oosetfemops (usually from
the current directory) is called.

Thus, using p.fuha.setops different methods for generating operators (matrices) can be tested. c

3 Allen–Cahn and Schnakenberg on networks

The Matlab class graph provides all we need to deal with “PDEs” on networks (aka undirected
graphs), namely a graph Laplacian, and powerful plotting of graphs. An undirected graph Γ consists
of nodes (points) pj, j = 1, . . . , n and edges encoded in the adjacency matrix A with Aij = 1 if there
is an edge between pi and pj. The degree ki of a node pi is the number of connecting edges, i.e.,
ki =

∑n
j=1Aij. The graph Laplacian is expressed by the matrix Lij = Aij − kiδij such that for a

function u : Γ → R, or simply u = (u1, . . . , un), we have ∆u = Lu. The “diffusive mobility” on the
graph is then given by c∆u with diffusion constant c ≥ 0.

We consider two types of graphs, namely:
� Watts–Strogatz (WS) “small world” networks [WS98], which in Matlab can be generated via

the convenience function WattsStrogatz; depending on the parameters K ∈ N (average degree,

3Expert users can of course modify this as desired, e.g., modify stansavefu (and loadp) to save (part of) p.mat;
alternatively FEM matrices such as the stiffness matrix K (Laplacian) could as well be stored as, e.g., p.K. In both
cases, calls to assema upon reload of a point can be omitted.

4and we’ll precisely modify the output function stanbra and the linear system solvers also in the demos below
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with theoretically n� K � lnn� 1) and β ∈ [0, 1] (rewiring coefficient), these graphs feature
local clustering (independent of n) and short average path lengths.

� Barabasi–Albert (BA) scale–free networks [AB02], which we generate via BAgraphA (as a mod
of BAgraph dir by Tapan P Patel, obtained from Matlab–central). These feature a power–law
degree distribution k−3, and compared to small world networks longer average path lengths
(approximately proportional to log n), and less clustering.

To conveniently use these functions, libs/misc contains the function G=mygraph(np,sw) where np

can be used to specify the number of nodes, and sw=0,...,4 to specify the graph type.5

We make no attempt to review details of the above graphs, and of their spectral theory or the theory
of Turing type pattern formation for RD systems on them, which is less developed than for the classical
Turing instability. Instead, we refer to the above references, and to [NM10, Wol12, HNM14, MW16]
and the references therein, and simply aim to explain how to do continuation and bifurcation for
systems like (3) on networks in pde2path, recovering results similar to those from the above references.
However, for simplicity we start with the scalar problem (2).

3.1 Allen–Cahn

Listing 1 shows the five function files used to encode (2) on a graph.

function p=acinit(p,par ,np,sw) % AC on graph , init , standard , except lines 4-6

p=stanparam(p); screenlayout(p); p.nc.neq=1; % standard params , scalar problem

p.sw.sfem=-1; % use the sG/sGjac and oosetfemops setting (without OOPDE !)

p.G=mygraph(np,sw); % generate graph (or load from disk)

p.np=p.G.numnodes; p.nu=p.np; % store #of points/unknowns

p.plot.pstyle =-1; % flag to call userplot in plotsol

p.nc.neig=min(20,p.np); % number of evals for bif -checking

p.u=zeros(p.np ,1); p.u=[p.u; par ’]; % initial guess , parameters appended

p.plot.auxdict ={’c’,’\lambda ’,’c2’,’c3’}; % parameter names

p.nc.ilam =2; p.sol.xi=1/(p.nu); % contine in par(2); and weight for arclength

p.sol.ds=0.1; p.nc.dsmax =0.5; % initial and max steplength

p.sw.bifcheck =2; p.sw.verb =2; p.nc.mu1=2; p.nc.mu2 =0.5; % bif -detection settings

function p=oosetfemops(p) % for AC on graphs; M=Id, L=graph -laplacian

p.mat.M=speye(p.np); p.mat.L=p.G.laplacian;

function r=sG(p,u) % AC on graph rhs

par=u(p.nu+1:end); u=u(1:p.nu); % split in par and PDE u

lam=par(2); c2=par(3); c3=par(4); f=lam*u+c2*u.^2+c3*u.^3; % "nonlinearity"

r=par(1)*p.mat.L*u-f; % residual

function Gu=sGjac(p,u) % AC on graph , Jacobian

n=p.nu; par=u(n+1:end); u=u(1:n); lam=par(2); c2=par(3); c3=par(4);

fu=lam +2*c2*u+3*c3*u.^2; Fu=spdiags(fu ,0,n,n); % local Jac , turned into matrix

Gu=par (1)*p.mat.L-Fu; % Jac=c*Lap -f_u

function userplot(p,wnr) % plot graph data

figure(wnr); clf; h=plot(p.G); h.MarkerSize =5; % matlab graph -plot + makeup

h.NodeCData=p.u(1:p.np); h.NodeLabel ={}; colormap cool; colorbar;

title ([p.file.dir ’/pt’ mat2str(p.file.count -1)]); set(gca ,’FontSize ’ ,14);

deg=degree(p.G); [~,order]=sort(deg ,’descend ’); % reorder by degree

figure (10); clf; xv=log (1:p.np); plot(xv ,deg(order),’r’); % plot by degree

hold on; plot(xv ,p.u(order)); xlabel(’ln i’); % plot u by degree + some makeup

title ([p.file.dir ’/pt’ mat2str(p.file.count -1)]);

5For sw=0, np is used as filename to load a graph from disk; otherwise see the source of mygraph.m for parameter
settings, and as always feel free to modify in any way.
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axis tight; ylabel(’’); set(gca ,’FontSize ’ ,14);

Listing 1: acinit, oosetfemops, sG, sGjac and userplot from modtut/acG.

Most of acinit is standard, and the only “graph–specific” settings are in line 4–6. In oosetfemops

we use the laplacian method from the graph class, and sG and sGjac are implemented in a completely
standard way. Similarly, no “graph–specific” settings at all occur in cmds1.m, see Listing 2. In the
first 3 lines of userplot we use plot from the graph class, followed by some “makeup” (font sizes
etc), and in the remainder we order the nodes by degree for “1D plots”.

%% AC on graph; Watts -Strogatz "small world" via sw=2, or already saved in G1

close all; keep pphome;

%% init and cont trivial branch

p=[]; par=[1 -0.2 0 -1]; % parameters c,lam ,quad ,cubic

sw=2; np=100; %sw=0; np=’G1 ’; % uncomment 2nd part to load fixed graph

p=acinit(p,par ,np,sw); p=setfn(p,’tr’); p=cont(p,15); % run continuation

% G=p.G; save(’G1’,’G’); % if you like the graph , save it to disk

%% swibra to nontrivial branches

p=swibra(’tr’,’bpt1’,’b1’ ,0.1); p=cont(p,10); % spatially homogeneous

p=swibra(’tr’,’bpt2’,’b2’ ,0.1); pause; p=cont(p,10); % pause to inspect tangent

p=swibra(’tr’,’bpt3’,’b3’ ,0.1); p=cont(p,10);

%% bifurcation diagram plot

f=3; c=5; figure(f); clf; plotbra(’tr’,f,c,’cl’,’k’,’lsw’ ,0);

plotbra(’b1’,f,c,’cl’,’b’,’lsw’ ,0); plotbra(’b2’,f,c,’cl’,’r’, ’lab’ ,10);

plotbra(’b3’,f,c,’cl’,’m’,’lab’ ,10); ylabel(’max(u)’);

%% solution plot , use pause to inspect (and export) plot

plotsol(’b2’,’pt10’); pause; plotsol(’b3’,’pt10’);

Listing 2: acG/cmds1.m, generating Figure 1

Figure 1 shows some sample results from cmds1. We continue the trivial branch u ≡ 0, and find
bifurcation points at the eigenvalues λj, j = 1, 2, . . . of the Laplacian, which are generically simple,
with eigenfunctions φj. In summary:

� The first bifurcation is at λ1 = 0 to the spatially homogeneous branch u ≡ ±
√
λ.

� For small increasing j the eigenfunctions φj at λj consists of more and smaller “clusters”; for
larger j the structure of the φj becomes difficult to understand graphically.

� The “patterns” on the bifurcating branches are essentially determined by the eigenfunction at
bifurcation. (This will be very different for the Schnakenberg problem on BA graphs below).

These results appear to be rather independent of the network size n (but do depend on the average
degree K and rewiring β), and we essentially chose n = 100 for graphical reasons. On a laptop,
Fig. 1 is computed in a few seconds, and runtimes stay small (on the order of tenths of seconds for a
continuation step) up to n = 1000, say.

In cmds2 (same structure as cmds1) we consider (2) on a BA graph with n = 250, see Fig. 1(c,d).
The main difference here is that for the BA graph many eigenvalues already cluster around λ = 1,
with the eigenfunctions difficult to distinguish visually. Nevertheless, the “patterns” on the bifurcating
branches still essentially seem to be determined by the eigenfunction at bifurcation. Again, this will
be fundamentally different for the Schnakenberg problem on a (the same) BA graph.

3.2 Schnakenberg

In the demo schnakG we consider (3) with parameters (σ, d1, d2) = (−0.3, 1, 500) on a WS graph
(the same as in Fig. 1(a,b)), see cmds1 and Fig. 2, and on a BA graph (same as in Fig. 1(c,d)), see
cmds2 and Fig. 3. The basic setup is as in the demo acG, and the main difference is that now we
have a 2–component system of equations. Thus, in sG we compose the 2–component Laplacian from
the scalar one, see Listing 3. Moreover, we find Hopf bifurcations (and period doublings), and hence
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Figure 1: (a,b) (2) on WS graph, np = 100, K = 4, β = 0.2. (a) BD, with trivial u = 0 branch (black), and

first three bifurcating branches b1 (blue, spatially homogeneous), b2 (red), and b3 (magenta). (b) tangent

at BP2, and sample plots, via plot method of the graph class. Hubs (higher degree nodes) placed at center,

nodes with smaller degree placed at the periphery. In the bottom plots, the nodes are ordered by decreasing

degree (red line), and the blue line is ui. (c,d) (2) on BA graph, np = 250, m = 3. (c) BD like in (a).

(d) tangent at BP2, and sample plot b2/pt10. The red line in (b) illustrates the power law distribution of

degrees.

also make a local modification of hoplot to plot Hopf orbits in the graph setting. In cmds1 we then
follow standard pde2path procedure, i.e., first continue the trivial branch, then a primary patterned
branch, on which we find a Hopf bifurcation. Switching to the Hopf branch via hoswibra, we find a
period doubling, and then switch to the bifurcating branch via poswibra, see the source of cmds1.m
for details and further comments. The computation of the periodic orbits and Floquet multipliers
runs very robustly.

function f=nodalf(p,u) % Schnakenberg

u1=u(1:p.np); u2=u(p.np +1:2*p.np); par=u(p.nu+1: end); % lam ,sig ,d

f1=-u1+u1.^2.* u2+par (2)*(u1 -u2.^( -1)).^2;

f2=par (1)-u1 .^2.*u2 -par (2)*(u1 -u2.^( -1)).^2;

f=[f1; f2];

function r=sG(p,u) % (graph) PDE rhs

f=nodalf(p,u); % compute "nonlinearity" (everything but diffusion)

par=u(p.nu+1:end); d1=par(3); d2=par(4); u=u(1:p.nu); % split in par and PDE u

L=p.mat.L; K=[d1*L 0*L; 0*L d2*L]; % compose 2-compo Lapl. from scalar one

r=K*u-f; % the residual

Listing 3: nodalf.m (nonlinearity f , i.e., everything but diffusion), and sG.m from schnakG.
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Figure 2: (3) with (σ, d1, d2) = (−0.3, 1, 500) on a WS graph, np=100, K=4, β=0.2. (a) BD, with primary

“Turing” branch (a1, blue), Hopf branch (h1, red), and PD (pd1, magenta). (b) tangent at at primary

Turing bifurcation, and solution at pt10. (c) h1/pt36 and pd1/pt10, snapshots at selected time slices,

showing “cluster oscillation”. (e) Time–series for h1/pt36 (top) and pd1/10 (bottom) at a selected node.

In Fig. 2 we show sample results from cmds1.m. The primary Turing branch bifurcates subcritically
and becomes stable after the fold, and the solutions keep their clearly clustered pattern determined by
the eigenfunction at bifurcation all along the branch. The branch loses stability in a Hopf bifurcation
at λ ≈ 0.8. In the bifurcating Hopf branch the oscillations are localized in a cluster on “the right” in
(c), and the same holds for the period–doubled branch bifurcating from the Hopf branch, see (d). In (e)
we show time–series (of node 1, which is not in the strongly oscillating cluster). There are no further
steady bifurcation points on the homogeneous (black) branch, but a Hopf point with bifurcation to a
homogeneous oscillation at λ = 1. Altogether, this shows that the WS graph in the given parameter
regime supports only clustered patterns (no single differentiated modes); this will be quite different
on the BA graph considered next.

In Fig. 3 we consider (3) with (σ, d1, d2) = (0, 0.4, 200) on the BA graph from Fig. 1(c,d). Here,
the primary Turing bifurcation is at λ ≈ 9.2, with many further small eigenvalues close by and
subsequently bifurcating branches. Moreover, the continuation of the primary (blue) branch behaves
quite differently than in Fig. 2: Away from the BP, the branch starts snaking [Kno08, ALB+10], and
the already not clearly visible “pattern” at bifurcation decomposes into single differentiated nodes; on
ways back an forth (in λ) single nodes (or several single modes) change their values from “neutral”
(near the homogeneous solution Uh = (λ, 1/λ)) to “plus” u� uh or “minus” u� uh, producing several
stable “patterns”. The same happens on the second (red) branch. These results are in agreement
with [NM10, Wol12], and [MW16], to which we refer for analytical discussion.
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Figure 3: BA graph, np = 250, m = 3, (σ, d1, d2) = (0, 0.4, 200). (a) BD of first two Turing branches b1

(blue) and b2 (red); snaking with many different stable solutions. (b) Tangent at first Turing (top), with

nodes sorted by degree (see red line) at bottom. (c-e) samples from b1, (f) sample from b2.

4 Chebychev methods

We briefly recall some basics of Chebychev differentiation [WR00, Tre02], and then explain a pde2path

Chebychev setup to compute branches for (2) and (3) over 1D and 2D boxes, with DBCs or NBCs.
First restricting to the 1D case and the interval I = [−1, 1], and functions u : I → R, the idea is to
choose grid points

xj = cos(jπ/n), j = 0, . . . , n,

which cluster at the boundaries, and which in a certain sense minimize the interpolation error between
a function u : I → R and its interpolating polynomial pn of degree at most n with pn(xj) = u(xj).
Then we approximate derivatives of u (at the grid points) by the derivatives of pn, i.e. set

∂xu(xj) = ∂xpn(xj). (5)

Under some technical assumptions, see [Tre02, Theorem 5.5], for smooth (analytic) functions u it can
then be shown that there exist constants C, α > 0 such that

sup
x∈I
|u(x)− pn(x)| ≤ Ce−αn, (6)
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i.e., exponential convergence of the approximants pn to u, and the same holds for derivatives ∂νxu−∂νxpn.
Due to a connection to Fourier analysis, this is also called spectral differentiation, and the exponential
error estimate is typical of spectral methods [Tre02].

On the other hand, since interpolation and differentiation are linear, (5) can be written as

(∂xuj)j=0,...,n = (Du)j, with differentiation matrix D ∈ R(n+1)×(n+1), (7)

which for instance is computed by cheb.m which comes with [Tre02]. Moreover, higher order deriva-
tives ∂mx u are simply given by (Dmu)j, where Dm = Dm. However, in contrast to the FEM, which
yield sparse differentiation matrices D̃, D is a full matrix. Hence there is a trade–off between the
spectral accuracy (6) (suggesting high accuracy with few grid points, i.e., small n) and the dense
matrices D,D2, . . ., in contrast to the sparse matrices (allowing large n) obtained from the FEM, but
only yielding algebraic accuracy, e.g., |∂xu′(xj)− vf,j| = O(h2) = O(n−2) with h = O(1/n).

If I = [−lx, lx] instead of I = [−1, 1], then we obtain ∂xuj by (7) and rescaling, i.e., ∂xuj = 1
lx

(Du)j.
Higher dimensional derivatives can be obtained from the 1D matrices Dx and Dy, say, via tensor
products. If for instance we want the Laplacian ∆u = (∂2

x+∂2
y)u on a box Ω = [−lx, lx]× [−ly, ly], then

we generate 1D meshes 1 = x0, . . . , xnx = −1 and 1 = y0, . . . , yny = −1 and associated Dx, Dy, namely
(in Matlab notation) [Dx,x]=cheb(nx); [Dy,y]=cheb(ny); Dx2=Dx^2; Dy2=Dy^2. Then we set
L=kron(Dx2,eye(ny+1))./p.lx^2+kron(eye(nx+1),Dy2)./p.ly^2; see below for further details,
pertaining to BCs. Figure (4)(a) shows a resulting 2D rescaled ’tensor grid’ with lx = 2, ly = 1
and, for graphical clarity, nx = 12, ny = 6, resulting in 112 mesh–points, and (b) shows the sparsity
structure of the resulting L, with nz = 2352 non–zeros out of 1122 = 12544 entries.

We consider two types of BCs in the demos: (i) DBCs and (ii) (homogeneous) NBCs. For (i), a
useful strategy is to generate the Laplacian L for the full grid, but only treat the inner grid points as
active. Thus, let ua be the vector of values at the inner grid points. Before acting with L we extend
ua by ub (for the boundary values), and afterwards we extract the residuals at the inner points again.
A similar strategy can also be used for (ii), by introducing ’virtual’ points beyond the boundary (see
the subdirectories ac1Dcheb, ac2DNBC of altcheb), but for homogeneous NBCs (∂nu = 0), we can
also put the contribution of the boundaries directly into L, for instance via the function cheb2bc from
[WR00].

(a) (b)

-2 0 2
-1

0

1

0 50 100

nz = 2352

0

50

100

Figure 4: (a) tensor grid, (b) sparsity structure

Remark 4.1 Representing functions u : [−1, 1]→ R by Chebychev interpolants yields various further

explicit formulas, e.g., for integration, root–finding, etc, and many of these have been put into the

remarkable package(s) chebfun and chebops, see [PT10, TBD18], and www.chebfun.org. These

also provide options to code and solve (adaptively, with guaranteed error bounds) 1D boundary value

problems in 2 or 3 lines of Matlab code. However, here we restrict to just the function [D,x]=cheb(n)

from [Tre02] and a few functions from [WR00], which for simplicity we put into libs/misc. c
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4.1 Allen–Cahn

ac1Dcheb. In the demo ac1Dcheb we consider (2) on Ω = (−2, 2) with homogeneous NBCs. The
effect of these NBCs can be put into L directly, using cheb2bc from [WR00], see Listing 5, and we do
not need to consider an extended mesh.6 The function acinit, and the script cmds1, proceed almost
exactly as for the graph case in §3.

function p=oosetfemops(p) % dx^2 via cheb

n=p.np; p.mat.M=speye(n); g=[0 1 0; 0 1 0]; % NBCs

[xt,D2]= cheb2bc(n,g); % following Reddy -Weideman

p.mat.L=D2/(p.lx^2); p.x=p.lx*xt; % rescaled Laplacian and mesh

function r=sG(p,u) % PDE rhs

n=p.nu; par=u(n+1:end); u=u(1:n); lam=par(2); c2=par(3); c3=par(4); % split u

f=lam*u+c2*u.^2+c3*u.^3; f(1)=0; f(n)=0; % ’nonlinearity ’, zeroed on the bdry

r=-par(1)*p.mat.L*u-f; % compute L*u on extended domain

function Gu=sGjac(p,u) % Jacobian

n=p.nu; par=u(n+1:end); u=u(1:n); c=par(1); lam=par(2); c2=par(3); c3=par(4);

fu=lam +2*c2*u+3*c3*u.^2; fu(1) =0; fu(n)=0; % zero f_u on bdry

Fu=spdiags(fu ,0,n,n); % local Jac , converted to matrix

Gu=-c*p.mat.L-Fu; % build Jac from bulk

function userplot(p,wnr) % mod of plotsol for Chebychev -diff setup

figure(wnr); clf; u=p.u(1:p.np); plot(p.x,u,’*-’); % plot

title ([p.file.dir ’/pt’ mat2str(p.file.count -1)]); % and some makeup

axis tight; set(gca ,’FontSize ’ ,14);

Listing 4: oosetfemops, sG, sGjac and userplot from modtut/ac1Dcheb.

In Fig. 4 we give the basic BD and sample solutions. The BPs from the trivial branch are at

λj = (jπ/4)2, φj(x) = sin(jπx/4), j = 0, 1, 2, . . . , (8)

and even with n = 30 we obtain these with at least 5 digits accuracy.
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Figure 5: BD and sample solutions for (2) on (−2, 2) with NBCs.

ac2DDBC. In the demo ac2DDBC we consider (2) on Ω = (−2, 2)× (−1, 1) with the DBCs

u|Γ1 = γ cos(πy/2), where Γ1 = {x = 2}, u|∂Ω\Γ1 = 0. (9)

6In altcheb/ac1Dcheb/ we proceed differently, and this might be useful for generalizations: we choose a Chebychev
mesh of n + 2 points, x1 = −1, xn+2 = 1, and only treat u(x2), . . . , u(xn+1) as the n = nu unknowns or degrees of
freedom (DoF). We can then extend u by the two boundary values u(x0) = u(x1) and u(xn+1) = u(xn) according to the
NBCs, compute ∂2xu on the full (extended) grid, but then return the residual only at the genuine grid points. Similarly,
we add the contribution from the boundaries to the Jacobian. Additionally, in userplot, the essential step is again to
extend u by the boundary values. See also altcheb/ac2DNBC for a 2D version of this.
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This is similar to [Uec21a, §6.3.1], where we use the FEM. The basic idea for the Chebychev dis-
cretization is explained above: We only use u on the inner grid points as DoF, and extend u on the
boundary for evaluating the rhs, and for plotting. In oosetfemops we generate the Laplacian on the
extended (tensor–product) grid, and, importantly, save the “bulk–indices” in p.bui.

function p=oosetfemops(p) % 2D, cheb , with DBCs

nx=p.nx; ny=p.ny; p.mat.M=speye(nx*ny); [Dx ,x]=cheb(nx+1); D2x=Dx^2;

[Dy,y]=cheb(ny+1); D2y=Dy^2; % Diff. matrices with two extra points for BCs

p.x=x; p.y=y; [xx,yy]= meshgrid(x,y); xx=xx(:); yy=yy(:);

p.lb=find(xx==-1); p.rb=find(xx==1); % left and right Bdry

p.bb=find(yy==-1); p.ub=find(yy==1); % bottom and top Bdry

p.bui=setdiff (1:(nx+2)*(ny+2) ,[p.lb;p.rb;p.bb;p.ub]); % bulk indizes

p.mat.L=kron(D2x ,eye(ny+2))/p.lx^2+ kron(eye(nx+2),D2y)/p.ly^2; % Laplacian

function r=sG(p,u) % PDE rhs

n=p.nu; par=u(n+1:end); u=u(1:n); % split u into par and (active) field

lam=par(2); c2=par(3); c3=par(4); f=lam*u+c2*u.^2+c3*u.^3; % nonlin.

uf=zeros ((p.nx+2)*(p.ny+2) ,1); % all u, to be filled by bulk and bdry values

uf(p.bui)=u(1:p.np); % filling in bulk

[xx,yy]= meshgrid(p.x,p.y); yy=yy(:); uf(p.rb)=par(5)*cos(pi/2*yy(p.rb)); % bd

r1=-par (1)*p.mat.L*uf; % acting with L on full u,

r=r1(p.bui)-f; % extract active (bulk) DoFs

function Gu=sGjac(p,u) % AC

n=p.nu; par=u(n+1:end); u=u(1:n); c=par(1); lam=par(2); c2=par(3); c3=par(4);

fu=lam +2*c2*u+3*c3*u.^2; Fu=spdiags(fu ,0,n,n); % loc. Jac and convert to matrix

Gu=-c*p.mat.L(p.bui ,p.bui)-Fu; % build Jac only for bulk

function userplot(p,wnr) % for AC2D with cheb and DBCs

figure(wnr); clf; n=p.nu; uf=zeros((p.nx+2)*(p.ny+2) ,1); % init full u with zero

par=p.u(p.nu+1:end); [xx ,yy]= meshgrid(p.lx*p.x,p.ly*p.y);

uf(p.bui)=p.u(1:n); % put the bulk values into uf ,

uf(p.rb)=par (5)*cos(pi/2*yy(p.rb)); % put bdry values and reshape to rectangle

uu=reshape(uf ,p.ny+2,p.nx+2); surf(xx ,yy ,uu); axis tight; % plot and cosmetics

Listing 5: oosetfemops, sG, sGjac and userplot from modtut/ac2DDBC.

In Fig. 7(a) we give the basic BD with γ = 0 (homogeneous DBCs) nx = 40 and ny = 20, and

c = 1/2; the BPs from the trivial branch are at λij =
π2

2
(
i2

16
+
j2

4
), i, j = 1, 2, . . ., and are found with

5 digits accuracy; Fig. 7(b) shows a sample from continuation of b1/b10 in γ.

(a) (b)

Figure 6: (a) BD for continuation in λ (b1 in blue, b2 in red) with homogeneous DBCs for (2) on

(−2, 2)×(−1, 1) and sample solutions. (b) Sample solution after continuation in γ.
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ac2DNBC. In the demo ac2DNBC we consider (2) on Ω = (−2, 2) × (−1, 1) with (homogeneous)
Neumann BCs ∂nu|∂Ω = 0, extending ac1Dcheb by tensor products, and storing the inner nodes in
p.bui, see oosetfemops in Listing 6. The function acinit.m and the script cmds1.m are essentially

as before. The BPs from the trivial branch now are at λij =
π2

2
(
i2

16
+
j2

4
), i, j = 0, 1, . . .. In particular,

the third BP at λ = π2/8 is double, with kernel spanned by φ2,0 = cos(2πx/4) and φ0,1 = sin(πy/2),
and the two bifurcating branches are on top of each other in the BD in Fig. 7.

function p=oosetfemops(p) % 2D, generate Chebychev -Lap with NBCs

nx=p.nx; ny=p.ny; p.mat.M=speye(nx*ny); g=[0 1 0; 0 1 0]; % BC code

[x,D2x]= cheb2bc(nx,g); [y,D2y]= cheb2bc(ny,g); % weideman

p.x=x; p.y=y; [xx,yy]= meshgrid(x,y); xx=xx(:); yy=yy(:);

lb=find(xx==-1); rb=find(xx==1); % left and right boundary

bb=find(yy==-1); ub=find(yy==1); % bottom and top boundary

p.bdi=[lb;rb;bb;ub]; % boundary indizes

L=kron(D2x ,eye(ny))./p.lx^2+ kron(eye(nx),D2y)./p.ly^2; % Lapl.

p.mat.L=sparse(L); p.x=x; p.y=y;

function r=sG(p,u) % PDE rhs

n=p.nu; par=u(n+1:end); u=u(1:n); c=par(1); lam=par(2); c2=par(3); c3=par(4);

f=lam*u+c2*u.^2+c3*u.^3; f(p.bdi)=0; % zero nonlin on bdry

r=-c*p.mat.L*u-f;

function Gu=sGjac(p,u) % AC, with DBCs

par=u(p.nu+1:end); u=u(1:p.nu); c=par(1); lam=par(2); c2=par(3); c3=par(4);

fu=lam +2*c2*u+3*c3*u.^2; fu(p.bdi)=0; % local Jac , zeroed on boundary

n=p.nu; Fu=spdiags(fu ,0,n,n); % local Jac , converted to matrix

Gu=-c*p.mat.L-Fu; % build Jac

Listing 6: oosetfemops, sG and sGjac from modtut/ac2DNBC.
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Figure 7: BD (with b1 (spatially homogeneous) in blue, b2 in red, b3 in orange, b4 in magenta), and sample

solutions for (2) on (−2, 2)× (−1, 1) with NBCs.

4.2 Schnakenberg

In the demo schnak2D we essentially use the ideas from ac2DNBC to consider (3) with (σ, d) = (0, 60) on

Ω = (−lx, lx)× (−ly, ly) with ly = 2π/kc, where kc =
√√

2− 1 is the analytically known critical wave

number, yielding the critical λ value λc =
√

60
√

3−
√

8, cf. [Uec20, §4]. The specific domain Ω (its
aspect ratio) pertains to a so called hexagonal dual lattice, and the first BP from the homogeneous
branch (u, v) = (λ, 1/λ) is double, with kernel spanned by cos(2πx/lx)φ and cos(πx/lx) cos(y/ly)φ
with φ ∈ R2. The primary bifurcating branches then are in the form of hexagons (transcritical) and
stripes (supercritical). Again see [Uec20, §4] for background, and in particular [Uec20, Fig. 22] for a
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basic BD of (3) on the same Ω, computed by the standard FEM setup, with nu ≈ 2700 DoF. Here, in
cmds1.m we obtain the same BD, see also Fig. 8, with nu = 1840 DoF, which we can actually decrease
to nu = 1020 (choose nx = 30 in cmds1.m).
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Figure 8: BD and sample solutions for (3) on Ω = (−lx, lx)×(−lx/
√

3, lx/
√

3) with NBCs, lx = 2π/kc ≈ 9.76,

nx = 40, ny = 23. Stripes (s± blue), up hexagons (or spots h+) and down hexagons (or gaps h-, both red),

and mixed modes (or beans b±, red and orange). In the BD we use maxu1 for the + branches, and minu1

for the − branches.

As already said, for the implementation we reuse the ideas from above, and in particular the
computation of the scalar Laplacian p.mat.L in oosetfemops as in ac2DNBC. From this we compose
the 2–component diffusion matrix in sG.m, see Listing 7, where the nodal nonlinearity nodalf takes
exactly the same form as on the graphs in §3.2, or in the standard FEM formulation.

function r=sG(p,u) % Schnakenberg

par=u(p.nu+1:end); f=nodalf(p,u); L=-p.mat.L; % nonlin and -Lapl

f(p.bdi)=0; f(p.np+p.bdi)=0; % zero nonlin on bdry for both comp

K=[L,0*L;0*L,par(3)*L]; r=K*u(1:p.nu)-f; % diffusion matrix and residual

Listing 7: sG from modtut/schnak2D.

In cmds2.m we run the same problem on Ω = (−lx, lx) × (−ly, ly), lx = 6π/kc, ly = lx/(2
√

3),
nx = 100, ny = 29. This somewhat elongated domain roughly corresponds to [Uec20, Fig.23], and like
there we obtain a snaking branch of a front between hexagons and stripes. However, already with the
resulting relatively small p.nu=5800, the numerics become rather slow, i.e., significantly slower than
in the original FEM setup with p.nu ≈ 20.000, but very sparse matrices. The non–sparse matrices
suggest to use (preconditioned) iterative solvers (uncomment, e.g., line 11 in cmds2) but this does not
yield a significant speedup.7

Thus, while these are rather superficial comparisons, so far the trade–off between spectral accuracy
and relatively dense matrices (Chebychev) vs h2–accuracy and sparse matrices (standard FEM) here
lets the FEM win.

5 Fourier methods

As a second alternative to the built–in FEM, we explain how to discretize problems such as (2) and
(4) via fast Fourier transform (FFT) F based methods. We focus on NBCs, and hence specifically

7This might change with matrix–free methods, which we did not yet check for the cheb discretizations, but which
will be explained for FFT discretizations in the next section.
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use the discrete cosine transform dct. FFT based methods are in particular simple and strong for
constant coefficient parabolic problem of the form

∂tu = −G(u) := −L(∂x)u+ f(u), u|t=0 = u0, (10)

with periodic BCs, or DBC, or NBC, on a box Ω = (0, l1) × . . . × (0, ld) ⊂ Rd. Taking the FFT of
(10) yields

∂tû = −Ĝ(û) = −µ(k)û+ f̂(û), û|t=0 = Fu0, (11)

where k ∈ L = πZ/l1×. . .×πZ/ld are the wave vectors from the lattice L, µ(k) are Fourier multipliers,
e.g., µ(k) = |k|2 if L = −∆, and f̂(û) = Ff(F−1û), which for the typical case of polynomial f can
also be expressed via convolutions of û.

Next we set ûj(k) = û(tj, k), tj = hj, and using ∂tû(tj, ·) ≈ 1
h
(ûj+1 − ûj) approximate (11) by

1

h
(ûj+1 − ûj) = µ(k)ûj+1 + f̂(ûj), (12)

which yields the time stepping

ûj+1 = ûj + hη(k, h)f̂(ûj), η(k, h) =
1

1 + hµ(k)
. (13)

This is a semi–implicit Fourier method (as the linear terms on the rhs of (12) are evaluated at the
next time–step j + 1), and in a nutshell the great advantage is that usually (e.g., for µ(k) = |k|2 and
similar), the multipliers η have |η(k, h)| < 1, and become smaller for larger h, and |η(k, h)| → 0 as
|k| → ∞ (damping of higher Fourier modes). In particular, there are no stiffness–related (CFL–like)
time stepsize conditions. Moreover, f̂ can be evaluated in O(n log n) time using FFT, including some
possibly necessary de–aliasing, where n is the number of Fourier modes (=number of spatial DoF)
used for the numerics. See [Uec09] for an ad hoc introduction to FFT time stepping, and the references
therein for background.

For FFT methods for steady continuation problems, which require Jacobians of the rhs

G(u) = L(∂x)u− f(u) of (10), or of Ĝ(û) = µ(k)− f̂(û) in (11),

the problem is that there is no way to avoid full Jacobians, because F and F−1 represent full matrices F
and F−1 (with actually F−1 = FH). Thus, if we work on G and want to evaluate L(∂x)u as F−1µ(k)Fu
then L(∂x)u = ∂u(F

−1µ(k)Fu) = F−1µ(k)F is full, even though µ(k) is nice and diagonal. Thus, also

J = ∂uG = F−1µ(k)F − ∂uf(u), (14)

is full, although the second term is diagonal. Similarly, working entirely in Fourier–space as in (11),
∂ûf̂(û) = ∂û(Ff(F−1û)) = F (∂uf(û))F−1, and hence the second term in

Ĵ = ∂ûĜ = µ(k)− F (∂uf(u))F−1 (15)

generates a full Jacobian (also if f is a polynomial and f̂(û) is evaluated via convolutions). Never-
theless, FFT–based continuation methods can be used efficiently on pattern forming problems with
smooth solutions, because again smoothness in physical space is related to fast decay of the Fourier
coefficients, namely exponential decay in case of analytic functions; see, e.g., [Tre02, Theorem 4.1].
Thus, we may hope to achieve high accuracy using the spectral differentiation ∂jxu = F−1(ik)jFu with
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relatively small n. See, e.g., [SAKR16, SAKR18] for continuation results based on FFT, also going to
rather large scale, and in particular [Tuc20] and [SN16] and the references therein for (more general)
methods for continuation in large scale problems with non–sparse (or only mildly sparse) Jacobians.

The full Jacobians suggest (preconditioned) iterative methods8 for the linear systems that need
to be solved in Newton steps, and similarly for the inverse vector iteration used in eigs to compute
small eigenvalues (and associated eigenvectors) for bifurcation detection and branch switching. The
preconditioner needs to take care of the stiffness generated by the differential operator (in x or in k).
For this, (14) and (15) are quite different. In (14), L(∂x) = F−1µ(k)F is full but only needs to be
computed once, which suggests to just once compute an approximate inverse of L as a preconditioner,
for instance via an incomplete LU decomposition (ilu) L(∂x) ≈ LU , or, since µ(k) is real and diagonal
and L(∂x) as a matrix is symmetric, an incomplete Cholesky ichol decomposition L(∂x) ≈ LCL

T
C .9

This can be used, see the demos ac1Dfoux and sh*Dfoux in altfou, but we find it more efficient to
work directly in Fourier space and hence with Ĵ from (15).

The simple diagonal form of the multipliers µ(k) suggests a particularly simple and efficient pre-
conditioner for the (full) matrix diagµ(k) + F (∂uf(u))F−1, which theoretically needs to be formed in
every step (but should and easily can be avoided in a matrix free implementation). Assuming µ(k) ≥ 0
(as for L(∂x) = −∆ with µ(k) = |k|2 and L(∂x) = (1 + ∆)2 with µ(k) = (1−|k|2)2), we choose a δ > 0
(typically δ = 0.1, chosen heuristically) and then LC =

√
µ(k) + δ as left and right preconditioner in

Fourier space.
Finally, the most expensive (O(n3)) term in (15) is −F (∂uf(u))F−1, due to the full matrix prod-

ucts, and hence should not be formed. In a matrix free method, all that is needed is the action of Ĵ
on a vector v̂, namely, in Matlab notation

Ĵ v̂ = µ(k)v̂ − dct(∂uf(idct(û))idct(v̂)), (16)

where idct and dct run in O(n log n).10 This can be passed to an iterative solver such as gmres as a
function handle, usually called afun, see, e.g., Listings 11 and 15.

In the following we first briefly consider the demo ac1Dfou, but then explain important tricks via
the demos sh1Dfou (1D), sh1Dmfree (matrix free version of sh1Dfou) and the 2D versions sh2Dfou

and sh2Dmfree. In Remark 5.1 at the end we comment on alternative versions ac1Dfoux and sh*Dfoux

which work with (14) but are altogether slightly less efficient.

5.1 Allen–Cahn 1D

In the (simple) demo ac1Dfou we treat (2) on Ω = (0, 2π) with NBCs. The appropriate FFT then is
dct. Given u = (u1, . . . , un), the standard form of v=dct(u) assumes an even (corresponding to NBCs)
extension of u across u1 at x = 0 to a 4π periodic function, and stores the discrete cosine coefficients as
v = (û0, û1, . . . , ûn−1). Thus, the multipliers corresponding to −∂2

x are µ = (0, 1, 4, . . . , (n− 1)2). The
transform can also be expressed as v=F*u with unitary (orthogonal) F=dctmtx(n), such that F−1 = F ′.
Thus, −∂2

xu can be expressed as F Tdiag(µ)F , and this is implemented (with the rescaling to (0, lx)
instead of (0, 2π)) in oosetfemops, see Listing 8. With this p.mat.k2, the remaining functions sG,

sGjac, userplot, acinit and the script cmds1 work exactly as in ac1Dcheb, yielding high accuracy
for a discretization with n = 30 points (n = 30 Fourier modes, 6 digits accuracy for the first four

8which are also well suited for matrix free methods where the Jacobian J or Ĵ is never formed, see below
9The Matlab solvers such as gmres, bicg, ... generally allow left–right preconditioners, which are generally

chosen as L,U (ilu) or LC , L
T
C (ichol).

10Alternatively, instead of idct and dct we may use u = FT û and û = Fu with the preassembled (orthogonal)
dct matrix F . This is O(n2), and thus still much faster than the O(n3) for forming −F (∂uf(u))FT , and we use this
formulation in 2D, since preassembling the 2D F via tensor products of 1D F matrix gives a clearer code, and altogether
for our n of interest up to O(104) seems at least as fast as the O(n log n) for dct2 and idct2.

16



BPs). In a local mod of stanbra we put the (normalized) L2–norm

(
1

|Ω|

∫
Ω

u2 dx

)1/2

on the branch

via approximation as a Riemann sum.

function p=oosetfemops(p) % FFT based , u in Fourier -space

kf=pi/p.lx; n=p.np; p.mat.M=speye(n);

kv=kf*[0:n-1]’; % F-vectors (normalized to (0,lx))

p.mat.k2=kv.^2; p.mat.F=dctmtx(n); % store multipliers , and dct matrix

function out=stanbra(p,u) % mod of stanbra to also put the L2-norm on the branch

uf=u(1:p.nu); np=p.nu/p.nc.neq; upde=p.mat.F’*uf; ul2=sqrt(sum(upde .^2)/p.nu);

out=[u(p.nu+1:end); max(abs(upde (1:np))); min(abs(upde (1:np))); ul2];

function r=sG(p,u) % PDE rhs in Fourier

n=p.nu; par=u(n+1:end); uf=u(1:n); lam=par(2); c2=par(3); c3=par(4);

F=p.mat.F; u=F’*uf; f=lam*u+c2*u.^2+c3*u.^3; ff=F*f; % nonlin.

r=par(1)*p.mat.k2.*uf-ff;

Listing 8: oosetfemops, stanbra and sG from modtut/ac1Dfou.

5.2 Swift–Hohenberg

For the fourth order SH equation (4), i.e.,

∂tu = −(1 + ∆)2u+ λu+ νu2 − u3, u ∈ R, (17)

we set L = (1 + ∆)2 with symbol µ(k) = (1 − |k|2)2 and consider f(u) = λu + νu2 − u3 as the
nonlinearity. Over, e.g., R2, the circle |k| = 1 of wave vectors becomes unstable at λ = 0, and over
bounded boxes Ω it depends on the domain size which of the now discrete wave vectors first becomes
unstable. Two standard cases are (i) a square with side–lengths 2πl, l ∈ N, where the two critical
wave vectors at λ = 0 are k = (1, 0) and k = (0, 1), and (ii) a rectangle with side lengths lx = 2πl1 and
ly = 2πl2/

√
3, l1,2 ∈ N, where the three critical wave vectors are k1 = (1, 0), k2,3 = (−1/2,±

√
3/2).

The latter, similarly used already in Fig. 8, corresponds to a so–called hexagonal dual lattice.

5.2.1 1D

sh1Dfou. First we consider the 1D case, over Ω = (0, 12π), such that the first three BPs are at
λ = 0 (k = 1), λ = 0.0255 (k = 11/12), λ = 0.0301 (K = 13/12). Listing (9) shows the generation of
the differentiation matrix in oosetfemops, and the implementation of sG and sGjac.

function p=oosetfemops(p) % SH via dct matrix F and multipl. matrix L

n=p.np; p.mat.M=speye(n); % mass matrix is Identity

kfx=pi/p.lx; kvx=kfx *[0:n-1]’; p.mat.F=dctmtx(n); % wave -nr and dct -matrix

p.mat.L=spdiags ((1-kvx .^2).^2,0,n,n); % multipliers as a diag matrix

function r=sG(p,u) % sh1D , rhs F-version

n=p.nu; par=u(n+1:end); uf=u(1:n); lam=par(1); c2=par(2); c3=par(3); % split

F=p.mat.F; u=F’*uf; ff=lam*u+c2*u.^2+c3*u.^3; f=F*ff; % "nonlinearity"

r=p.mat.L*uf-f; % residual

function Gu=sGjac(p,u) % sh1D , (full) Jacobian via F

n=p.nu; par=u(n+1:end); uf=u(1:n); lam=par(1); c2=par(2); c3=par(3);

F=p.mat.F; u=F’*uf; fu=lam+2*c2*u+3*c3*u.^2;

Fu=F*( spdiags(fu ,0,n,n)*F’); Gu=p.mat.L-Fu;

Listing 9: oosetfemops, sG and sGjac from modtut/sh1Dfou
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Additionally setting up sGjac as usual, we can run (4) on Ω = (0, 12π) with high accuracy (again
judged by the 6 correct digits of the first BPs) with just n = 100 Fourier modes in cmds1. Figure
(9) shows some results, where we focus on the first Turing branch, and a secondary bifurcation to a
snaking branch of a front between the primary pattern and u ≡ 0. Here we clearly achieve higher
accuracy with fewer modes (and, despite the fullness of Jacobians comparable or higher speed) than
with the built-in FEM for the same problem, cf. [Uec20, §3].
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Figure 9: BD and sample solutions for (4) on (0, 12π) with NBCs ∂xu|∂Ω = ∂3
xu|∂Ω = 0; n = 100.

sh1Dmfree. In this demo we explain the matrix free setup based on (16), which is implemented
in afun, see Listing 11, and is called by gmres. This naturally goes together with a few further
modifications of the problem files for (17), and of the pde2path library routine belpi (bordered
elimination (with) post iteration, see [UW17]). Since the signature of afun in gmres is (more or
less) fixed, we find it most convenient to pass the needed multipliers µ and the local derivative ∂uf
(computed in sGjac) via the (one and only, usually unused) pde2path global variable p2pglob. In
Listing 11 we also collect the (somewhat) problem dependent interface lssgmres to gmres. This is
also called in myeigsfu, which, by setting p.sw.eigssol=3, is called in the inverse vector iteration
in eigs for computing p.nc.neig eigenvalues near p.nc.eigref, and the associated eigenvectors.
We use the bordered elimination solver lssbel with lssgmres as inner solver for both, the n × n
systems in natural parametrization, and the (n+1) × (n+1) systems in arclength parametrization.
Here we have default border width p.bel.bw=0, in which case lssbel really just calls lssgmres, but
in arclength we temporally set p.bel.bw=p.bel.bw+1, and lssgmres deals with the bulk part, while
the 1 × n borders are treated extra. This way we can use the n × n preconditioner on both, the
standard and arclength extended systems. However, our (very simple) lssbel algorithm sometimes
needs (1 or 2) post-iterations, and thus we also need to adapt the computation of the n× n systems’
residuals in the library function belpi in the local directory.

function p=oosetfemops(p) % SH by dct , matrix free , multipl. stored in p2pglob

n=p.np; p.mat.M=speye(n); kfx=pi/p.lx; kvx=kfx *[0:n-1]’; % M and wave numbers

global p2pglob; p2pglob.mu=(1-kvx .^2) .^2; % multiplier , used in sG and afun

p.mat.prec=spdiags(sqrt((1-kvx .^2) .^2+1) ,0,n,n); % prec , used in lssgmres

function r=sG(p,u) % matrix free , multipl.in p2pglob , needed in lssgmres anyway

n=p.nu; par=u(n+1:end); uf=u(1:n);lam=par(1);c2=par(2);c3=par(3);

u=idct(uf); ff=lam*u+c2*u.^2+c3*u.^3; f=dct(ff); % "nonlinearity" via dct (no F)

global p2pglob; r=p2pglob.mu.*uf -f; % residual

function Gu=sGjac(p,u) % matrix free Jacobian ,

global p2pglob; % p2pglob.fu further used in lssgmres

n=p.nu; par=u(n+1:end); uf=u(1:n); lam=par(1); c2=par(2); c3=par(3);

u=idct(uf); fu=lam+2*c2*u+3*c3*u.^2; p2pglob.fu=fu;

18



Gu=speye(n); % dummy , returned here cause size used as dimension at places

Listing 10: oosetfemops, sG and sGjac from modtut/sh1Dmfree. The multipliers µ and the local derivative
∂uf are stored and passed (for convenience) to afun in the global variable struct p2pglob.

function y=afun(uf) % lin.of SH used in lssgmres; p2pglob.fu filled in sGjac

global p2pglob; mu=p2pglob.mu; fu=p2pglob.fu; y=mu.*uf -dct(fu.*idct(uf));

function [x,p]= lssgmres(A,b,p) % gmres interface for SH1D , see afun

n=size(b,1); try; ittol=p.ittol; limax=p.limax; catch; ittol =1e-8; limax=n; end

maxit=min(limax ,n); L=p.mat.prec; % preconditioner (diagonal , shifted multipl)

tic;[x,flag ,relres ,iter]= gmres(@afun ,b,[],ittol ,maxit ,L,L’);iter=iter (2);t1=toc;

if p.sw.verb >2; fprintf(’gmres -flag=%i, relres =%g, i=%i, time=%g\n’ ,...

flag ,relres ,iter ,t1); end

% following line is a typical ’fallback ’ (but not here , cause A is not set)

if flag >0; fprintf(’gmres failed , using lss\n’); tic; x=A\b; toc , end

function y=myeigsfu(p,A,B,sig ,b) % solver to be called in eigs; calls lssgmres

% (with global prec); here for SH: typical matrix free spectral differentiation

global p2pglob; fu=p2pglob.fu; p2pglob.fu=fu+sig; % put shift into fu

y=lssgmres(A,b,p); p2pglob.fu=fu; % solve and restore fu

function [x,y,p,r]=belpi(A,b,c,d,f,g,p)

% BELPI: bordered elimination with post iterations; here mod for matrix free

% (A is dummy) lss (called in bel), i.e., error tests must be adapted

global p2pglob; mu=p2pglob.mu; fu=p2pglob.fu;

[x,y,p]=bel(A,b,c,d,f,g,p); % block -elim

fs=f-(mu.*x-dct(fu.*idct(x))+b*y); % modded , org: fs=f-(A*x+b*y);

gs=g-(c*x+d*y); r=norm([fs;gs],’inf’); iter =0;rs=r;

while r>p.bel.tol && iter <p.bel.imax

[x1,y1,p]=bel(A,b,c,d,fs,gs,p); x=x+x1;y=y+y1; iter=iter +1; % corrector

fs=f-(mu.*x-dct(fu.*idct(x))+b*y); % modded , org: fs=f-(A*x+b*y);

gs=g-(c*x+d*y); r=norm([fs;gs],’inf’); rs=[rs ,r];

end

if iter >0 && p.sw.verb >1

str1=[ num2str(iter),’ post iterations done in belpi’];

str2=[’residuals were ’,num2str(rs)]; disp(str1);disp(str2);

end

Listing 11: afun, myeigsfu, lssgmres and mod of the library function belpi from modtut/sh1Dmfree

Finally, Listing 12 shows a basic script for using the above setup. First (line 2) we need to declare
the global variable p2pglob; then (line 6) we tell pde2path to use the linear system solver lssbel

with border-width 0, tol=1e-4, at most 5 corrections in belpi, and lssgmres as inner solver, and to
also run eigs via myeigsfu. In lssgmres we query for an (optional) tolerance p.ittol, which we set
in l7, and finally we also set the number p.nc.neig of eigenvalues to compute to a rather small value.
The reason is that the iterative linear system solvers are typically not well suited for the inverse vector
iteration (IVI), and this is probably the main drawback of the setup: the IVI, in particular if there
are several small eigenvalues very close together, needs rather accurate solutions, which is why we
use the rather high accuracy p.ittol=1e-8, and hence lssgmres does need many (typically around
30-40) iterations for each linear system inside the IVI. See also the discussion in [Tuc20, §11.3] on
other possibilities for preconditioning. Nevertheless, cmds1 runs in about only 1s. In a second script
cmds2 with the same setup we go to somewhat larger scale Ω = (0, 30π) with n = 600 and compute a
snake similar to Fig. 9, which is again robust and fast.

%% SH1D , via dct , matrix free (dummy Gu) via lssgmres and afun for Jac

close all; keep pphome; global p2pglob; % stores multiplier mu, and f_u

%% init , small dom , for testing , and cont trivial branch for a few steps
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p=[]; par=[ -0.1 2 -1]; % lam ,quad ,cubic

nx=100; lx=4*pi; dir=’tr1’; p=shinit(p,lx ,nx ,par); p=setfn(p,dir);

p=setbel(p,0,1e-4,5, @lssgmres); p.sw.eigssol =3; % use gmres for Newton&Evals

p.ittol =1e-8; p.nc.neig =4; % tolerance in gmres , compute rather few Evals

p=cont(p,4); % go

%% switch to first bifurcating branch

p=swibra(dir ,’bpt1’,’b1’ ,0.01); p.nc.neig =1; p.nc.eigref = -0.2; p=cont(p,20);

Listing 12: Script cmds1 from modtut/sh1Dmfree, small scale test case.

5.2.2 2D

sh2Dfou. Listing 12 shows the generation of the spectral differentiation matrix L in 2D, where
similar to Listing 5 the 2D dct matrix p.mat.F is obtained from a tensor product of two 1D dct

matrices Fx and Fy, and similar for the multiplier matrix p.mat.L.11

The remaining functions sG, sGjac and stanbra then stay exactly as in 1D. For testing we
consider two cases. First, in cmds1 we consider (4) on Ω = (0, 2π)2, such that the primary bifurcation
is double, with kernel spanned by cos(x) and cos(y). By the D4 symmetry of the square, we then
have 3 bifurcating branches, namely horizontal and vertical stripes, and spots, which are found in
pde2path by solving the pertinent cubic bifurcation equations via cswibra, see [Uec20, §3.3]. This
runs very robustly already on a very coarse grid of nx=ny=20.

function p=oosetfemops(p) % SH 2D, full Jac via dct matrix F

nx=p.nx; ny=p.ny; n=nx*ny; p.mat.M=speye(n);

kfx=pi/p.lx; kvx=kfx *[0:nx -1]’; kfy=pi/p.ly; kvy=kfy *[0:ny -1]’;

Fx=dctmtx(nx); Fy=dctmtx(ny); F=kron(Fx ,Fy); % 1D dcts , and 2D

dd1=1-2*kvx .^2+ kvx .^4; dd2=-2*kvy .^2+ kvy .^4; % multipliers

D1=spdiags(dd1 ,0,nx ,nx); D2=spdiags(dd2 ,0,ny ,ny);

kx2=spdiags(kvx.^2,0,nx ,nx); ky2=spdiags(kvy.^2,0,ny ,ny);

L2x=kron(kx2 ,eye(ny)); L2y=kron(eye(nx),ky2);

L4x=kron(D1 ,eye(ny)); L4y=kron(eye(nx),D2);

L=L4x+L4y+2*L2x*L2y; p.mat.L=L; % multiplier matrix

p.mat.F=F; p.mat.prec=sqrt(L+speye(n)); % store F and prec

function r=sG(p,u) % SH 2D, rhs via F

n=p.nu; par=u(n+1:end); uf=u(1:n); lam=par(1); c2=par(2); c3=par(3);

F=p.mat.F; u=F’*uf; f=lam*u+c2*u.^2+c3*u.^3; ff=F*f; r=p.mat.L*u(1:n)-ff;

Listing 13: oosetfemops and sG from modtut/sh2Dfou. Remainder like in sh1Dfou.

In cmds2 and Fig. 10 we turn to a somewhat larger scale computation, namely (17) with ν = 2 on
Ω = (0, lx) × (0, ly), lx = 12π, ly = lxx/

√
3, i.e., a non–small domain with a hexagonal dual lattice.

We run this on a coarse mesh with nx = 100, ny = 56, hence p.nu=5600 DoF. This yields already
rather slow computations, as the expensive term F (∂uf(u))F−1 in sGjac takes several seconds. This
motivates (a) to use a Newton chord method (flagged by p.sw.newt=1) instead of the default Newton
method (flagged by p.sw.newt=0), and (b) the matrix free implementation described below, which
yields the same results an order of magnitude faster, but first we comment on Fig. 10. The primary
BP at λ = 0 is again double, with, due to the Neumann BCs, the kernel spanned by vertical stripes
and hexagons. Using qswibra we switch to the hexagon branch (blue), and from this via swibra to
a branch (red) of fronts between hexagons and u ≡ 0. This runs very robustly (using standard cont)
on the coarse mesh, which is remarkable as similar computations based on the FEM setup require
finer meshes (on the order of p.nu=30000, say), and heavy use of pmcont [UWR14] to avoid branch
jumping.

11These simple tensor product structures are also the main reason why we use û = Fu and u = FT û, for the discrete
2D dct and inverse, instead of the built in dct2 and idct2.
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Figure 10: BD and sample solutions for (4) on (0, lx)× (0, ly), lx = 12π, ly = lxx/
√

3, nx = 80, ny = 46 with

NBCs ∂nu|∂Ω = ∂n∆u|∂Ω = 0. (a) hexagon (blue) and hex-front (red) branches, stripes in orange. (b) Hex

sample solution, illustrating the quite coarse mesh. (c) Kernel vectors at the primary bifurcation. (d) Two

samples from the snaking red branch.

This shows that the FFT based methods much better preserve symmetry. Also, the numerical ker-
nel vectors φ1 and φ2 from Fig. 10(c) are exactly the “natural” kernel vectors φ1 = cos(x/2) cos(

√
3y/2)

and φ2 = cos(x), while in the FEM setup they are often somewhat distorted, as just some (orthogo-
nal) base of the kernel is computed. As a consequence, in the situation of Fig. 10 we can in principle
skip the computation of bifurcation directions τ by numerical solution of the algebraic bifurcation
equations, and simply compose the bifurcation directions by hand, namely τ = φ1 + φ2 for hexagons
and τ = φ2 for stripes, and this what we actually do for the stripes, thus skipping a call to cswibra.

sh2Dmfree. In this demo we consider a matrix free implementation of sh2Dfou, basically following
sh1Dmfree, and obtaining for instance the results from Fig. 10 an order of magnitude faster, with one
extra issue to consider. In oosetfemops in Listing 14 we start with essentially a mix of oosetfemops
from sh2Dfou and from sh1Dmfree. Compared to the latter, here we also store F in p2pglob.F, for
use in sG, sGjac, and afun, cf. Footnote 11. A special “trick” is the use of p.needGu in sGjac. If
p.needGu=1, then the expensive full Jacobian is formed, which is otherwise omitted. The reason is that
(presently) ∂uG is needed for branch switching at BPs of higher multiplicity via qswibra (quadratic
bifurcation equations) or cswibra, which need to compute higher order directional derivatives.

function p=oosetfemops(p) % SH 2D, dct , matrix free , F passed via p2pglob

nx=p.nx; ny=p.ny; n=nx*ny; p.mat.M=speye(n);

% .. all as in sh2Dfou/oosetfemops ..., last line new:

global p2pglob; p2pglob.mu=diag(L); p2pglob.F=F;

function r=sG(p,u) % SH 2D via dct with preassemble dct -matrix F and mult. mu

global p2pglob; F=p2pglob.F;
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n=p.nu; par=u(n+1:end); uf=u(1:n); lam=par(1); c2=par(2); c3=par(3); % split

u=F’*uf; ff=lam*u+c2*u.^2+c3*u.^3; f=F*ff; % "nonlinearity"

r=p2pglob.mu.*uf-f; % residual

function Gu=sGjac(p,u) % matrix free Jac , except when called with p.needGu =1

global p2pglob; F=p2pglob.F;

n=p.nu; par=u(n+1:end); uf=u(1:n); lam=par(1); c2=par(2); c3=par(3);

u=F’*uf; fu=lam+2*c2*u+3*c3*u.^2; p2pglob.fu=fu;

try needGu=p.needGu; catch needGu =0; end

if needGu; t1=tic; Fu=F*( spdiags(fu ,0,n,n)*F’); t1=toc(t1); fprintf(’time for Gu

: %g\n’,t1);

Gu=diag(p2pglob.mu)-Fu; % provide Gu for q(c)swibra

else Gu=speye(n); end % provide dummy

function y=afun(uf) % A*uf function for lssgmres for SH via fu (from sGjac)

global p2pglob; mu=p2pglob.mu; fu=p2pglob.fu; F=p2pglob.F;

y=mu.*uf-F*(fu.*(F’*uf));

Listing 14: oosetfemops, afun, sG, and sGjac from modtut/sh2Dmfree. For p.needGu=1 we give up the
matrix free approach in sGjac as Gu is needed for branch switching at BPs of higher multiplicity, cf. cmds1
in Listing 15.

Listing 15 shows how to run this (mostly, i.e., except for using Gu in qswibra) matrix free approach
on the same problem as in sh2Dfou/cmds2, to obtain the same results as in Fig. 10 much faster. In
line 13, however, we switch on the computation of Gu in sGjac for qswibra. In fact, this could be
avoided here, given the very clean numerical eigenvectors φ1, φ2 from Fig. 10(c), from which with some
experience we see that the hexagon branch roughly corresponds to φ1 + φ2, such that (although it is
transcritical) we can also switch to the hexagon branch via p =gentau(p0,[1 1]) as we do for the
stripes branch in line 22ff. However, in general it may not be clear what are the pertinent directions,
and also λ′(s) may need to be set to a good value in the transcritical case. These computations are
all part of qswibra.

%% SH 2D mesh free , larger scale , hex -front -branch

close all; keep pphome; global p2pglob; % stores multipliers , f_u , and F

%% init

p=[]; par =[ -0.01 2 -1]; lx=12*pi; ly=lx/sqrt (3); nx=100; ny=round(nx*ly/lx);

p=shinit(p,lx,ly,nx,ny,par); p=setfn(p,’tr2’);

p.sol.ds =0.01; p.sw.verb =2; p.nc.neig =4; p.ps=2; % contour in userplot

p=setbel(p,0,1e-4,20, @lssgmres); p.sw.eigssol =3; % use gmres for Newton&Evals

p.limax =200; p.ittol =1e-8; % max -it and tolerance in gmres

p.sw.bifcheck =2; p.nc.bisecmax =6; % bifdetec and loc. via Evals

tic; p=cont(p,2); toc % just 2 steps to find prim. bif (at lam=0)

%% 1BP double , use qswibra , Gu needed here and ONLY here , hence switch it on

aux =[]; aux.soltol =1e-10; aux.m=2; aux.isotol =1e-12; p=loadp(’tr2’,’bpt1’);

p.needGu =1; p0=qswibra(p,aux); p0.needGu =0; % switch full Gu on/off for qswibra

p0.sw.spcalc =1; p0.nc.neig =1; p0.nc.eigref =-0.1; % just one Eval for stab.

p0.sw.verb =2; p0.sw.bifcheck =0; p0.nc.tol=1e-6; % switch off bifcheck

p0.sol.ds=0.1; p0.nc.dsmax =0.1; p0.file.smod =10;

%% select tangent and cont , save first 2 steps for swibra to snake at 1st point

p=seltau(p0 ,2,’hexl’ ,2); p.sw.spcalc =0; p.file.smod =1; p.sol.ds= -0.01;

ta=tic; p=cont(p,2); toc(ta);

p.sw.spcalc =1; p.file.smod =10; p.nc.dsmax =0.1; p=cont(p,20); % further steps

%% stripes via gentau

p=gentau(p0 ,[0 -1]); p=setfn(p,’b1l’); p=cont(p,20);

%% hex -front via swibra from approximate BP,

p=swibra(’hexl’,’pt1’,’hf’ ,0.005); p.nc.dsmax =0.2; p.nc.dsmin =0.001;

p.nc.tol=1e-4; tic;p=cont(p,2);toc % 2 steps with large tol to get on the branch

p.nc.tol=1e-6; tic; p=cont(p,50); toc % back to small tolerance

Listing 15: First part of cmds2 (last 6 lines for plotting) from modtut/sh2Dmfree.
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Otherwise, we remark that for branch switching to the red snake we do not localize the pertinent
BP, but simply call swibra on the first point on the hexagon branch (line 24), which yields the needed
(approximate) kernel. Moreover, and relatedly, on the hex, stripe and hex2zero-front branches we
only compute 1 eigenvalue near µ0 = −0.1 (see line 14) to decide on the stability of solutions. The
reason, again, is that eigenvalue computations with lssgmres inside the inverse vector iteration are
expensive due to the high accuracy required.

Thus, altogether we do need to apply a few “tricks” to make the continuation and bifurcation to
branches of interest on this non–small domain robust and fast. Nevertheless, I believe this illustrates
the strength of (matrix free) FFT methods for specific questions, and how to run them in pde2path.

Remark 5.1 a)The subdirectory modtut/altfou contains alternate versions for (2) in 1D, and 17 in
1D and 2D, based on FFT spectral differentiation but working in x–space, i.e., in the form G(u) =
F−1µ(k)Fu − f(u). Consequently, in the Jacobian, the differential term L(∂x) = F−1µ(k)F is full
(but symmetric), but the term ∂uf(u) is diagonal, cf. the discussion after (14). Thus, for iterative
methods here we can use an ilu or ichol preconditioner. This basically works, but slightly slower
than the versions based on (15) discussed so far, and thus here we refrain from details and refer to
the comments in the demos in modtut/altfou.

b) Naturally, also systems such as (3) can be treated via FFT by applying the spectral differenti-

ation component–wise, and using, e.g., LC=diag(d1

√
|k|2+1, d2

√
|k|2+1) as preconditioner. c

5.3 Problems on disks

For (2) on a disk Ω = {(x, y) = r(cos(ϑ), sin(ϑ)) : r ∈ [0, R), ϑ ∈ (0, 2π]} with either (homogeneous)
NBCs

∂nu = 0 on ∂Ω = {r = R}, (18)

or with DBCs, which we take in the form

u = γ cos(ϑ) on ∂Ω = {r = R}, (19)

we can combine a Chebychev discretization in r with a Fourier discretization in ϑ. We follow [Tre02,
Ch. 11] for the basic idea, and explain the setup for (18) in the demo acdiskNBC, using R = 5,
and hence consider the same problem as (with the FEM) in [Uec21a, §6.8.3] and in the demo
demos/acsuite/acdisk. For (19) we then have a very similar setup in the demo acdiskDBC. To
deal with the rotational invariance of the problem (in case (19) only for γ = 0), for the continuation
of branches with angular dependence we must add a rotational phase–condition, e.g.,

q(u) = 〈u, ∂ϑuold〉 = 0, (20)

where 〈u, v〉 =
∫

Ω
uv dΩ is the L2–inner product and uold is the solution from the last continuation

step. Hence, for (18) we altogether consider

G(u) := −∆u− λu+ u3 + s∂ϑu
!

= 0, q(u) := 〈u, ∂ϑuold〉
!

= 0, ∂nu|∂Ω = 0. (21)

Let R = 1 and note that the general case follows by rescaling. To obtain a suitable r discretization
(not too fine near the coordinate singularity r = 0), the idea is to generate the 2nr Chebychev points
r1=1, r2, . . . , rnr |rnr+1, . . . , r2nr=− 1 in the interval [−1, 1], and use the tensor product of (r1, . . . , rnr)
with the equidistant angular mesh 0 < ϑ1 = 2π/na < ϑ2 < . . . < ϑna = 2π for the discretization. The
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polar coordinates Laplacian

∆u = ∂2
ru+ r−1∂ru+ r−2∂2

ϑu, (22)

then also is a tensor product of the differentiation matrix for ∂2
ϑ (which we implement as a Töplitz

matrix [Tre02, Ch.3]), and the differentiation matrices for ∂r, ∂
2
r (Chebychev matrices). For the latter,

we must take into account that although we discard all rj < 0 we must add their contributions to
∂r, ∂

2
r , see [Tre02, Ch.11].

Additionally, we need to set up a userplot, and it is useful to set up some function for evaluating
integrals, for instance

‖u‖2
2 =

1

|Ω|

∫
Ω

u2(x) dx =
1

πR2

∫ 2π

0

∫ R

0

ru2(r cosϑ, r sinϑ) dr dϑ (23)

for plotting BDs. For the latter, we use the function I=dchebint(p,u), where we evaluate the inner
integral via trapz. For plotting, we mostly refer to acdiskNBC/userplot, and mainly remark that
since r = 0 is never in the mesh, we give the option of “filled–in” plots by averaging u from u|r=rmin

,
controlled by the switch p.ipz, additional to the switch p.ups for plot styles. In Table 2 we summarize
the functions used in the demo acdiskNBC, and in Fig. 11(a,b) we plot some results. The spectral
accuracy allows quite coarse meshes (here p.np=576) for this simple problem, but for larger scale
problems the only mildly sparse Jacobians may again become problematic.

Table 2: Overview of acdiskNBC, and of functions used from pde2path/libs/misc/.

function remarks

cmds1 script for (21)
p=acinit(p,R,nr,na,par) init; here mainly store the radius p.lx=R, and the # of discretization points

nr (in r) and na (in ϑ) in p.nr, p.na, and call oosetfemops.
p=oosetfemops(p) generate discretization and system matrices, based on CFlapNBC

sG, sGjac, qf, qjac rhs, Jacobian, and constraint (20) and its derivative; with the disk Laplacian
p.mat.K and the ∂ϑ differentiation matrix p.mat.Dphi, these work as usual.

userplot(p,wnr) plot solution; important switches are p.ups (user-plot-style), and p.ipz (in-
terpolate to r = 0 if ipz > 0).

[L,...,r]=CFLapNBC(p) Generate mesh and system matrices for Chebychev–Fourier discretization; in
case of DBCs (demo acdiskDBC) we instead use CFLapDBC

I=dchebint(p,u) integrate u (over Chebychev–Fourier mesh) over disk.

In Fig. 11(c,d) we consider (19) with γ = 0, yielding the expected results, and in Fig. 12 we then
turn to the case of γ 6= 0 in (19). In (a), with samples in (b,c) we fix γ = 0.1 and see that the branches
from Fig. 11(b) roughly remain, but now with imperfect bifurcations, cf. [Uec21a, §6.2.1]. In (d) we
continue in γ, yielding an isola.
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(a) (b)

(c) (d)

Figure 11: (a,b) BD and sample solutions for NBCs; the first two plots in (b) are the same solution, with

the origin “filled in” in the second p.ipz=1. (c,d) BD and sample solutions for DBCs (19) with γ = 0.

(a) (b)

(c) (d)

Figure 12: (a–c) BD and sample solutions for continuation in λ, γ = 0.1 fixed (acdiskDBC/cmds1). (d) BD

and sample solutions for continuation of i2/pt6 from (a) in γ (acdiskDBC/cmds2).
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6 Summary

In order to explain how to use pde2path for problems d
dt
u = −G(u) with “arbitrary” rhs −G(u), not

using the built–in FEM discretizations, we explored (2) and (3) on graphs, and (2)–(4) as PDEs using
Chebychev and Fourier spectral methods. Running pde2path on the graphs is easy and yields inter-
esting results, which however we do not further discuss here as our primary goal was the explanation
of data structures. For the alternative discretizations of the PDEs we obtain the analogous results
to those based on the FEM discretization in [RU19, Uec20], with generally much coarser discretiza-
tions (smaller n), and which, moreover, seem generally more robust wrt to keeping symmetry while
continuing branches of patterns (less “branch–jumping”). However, as the spectral methods yield full
(or only mildly sparse) matrices, to also turn this into an speed advantage we need some additional
tricks, and we explained some iterative linear system solver methods for the FFT based methods in
§5. Moreover, spectral methods require specific domains (here boxes, or the disk as a special case)
and BCs. In this sense, the FEM is more general, and in pde2path additionally comes with ready
to use mesh–adaptation methods. Nevertheless, depending on the problem type it may be useful or
necessary to implement a rhs independent of the built–in FEM, and with the above examples we
hope to give some useful templates for this. For instance, given the (scalar) Laplacians CFlapNBC and
CFLapBDC from §5.3 we can also set up vector valued problems such as (3) and (4) (as a 2nd order
system) on disks. The latter is again amazingly rich in patterns, and, in a cubic–quintic version, has
been studied via the FEM in [VKU21]. Using the Chebychev–Fourier discretization we recover the
same patterns and branches with considerably less DoFs, but again with little speed advantages.
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