
Fold and branch point continuation in a Schnakenberg system and details of
branch plotting – a pde2path tutorial

Hannes de Witt1

1 Institut für Mathematik, Universität Oldenburg, D26111 Oldenburg, hannes.de.witt@uni-oldenburg.de

April 4, 2017

Abstract

We describe the OOPDE settings in pde2path for a Schnakenberg system with fold and branch
point continuation in 1D and 2D. Additionally details of the pde2path function plotbra, which
plots and labels branches, are discussed.

1 Introduction

The aim of this tutorial is to extend [RU17] to the system case. As a model system we consider the
modified Schnakenberg system

0 = D∆U + F (u), F (u) =

(
−u+u2v
λ−u2v

)
+ σ

(
u−1

v

)2(
1
−1

)
(1)

with U = (u, v)(x) ∈ R2, x ∈ Ω ⊂ Rn, n = 1, 2, Ω an interval or a rectangle and diffusion matrix
D =

(
1 0
0 d

)
. Excepting §6 we stick to d = 60 where analytically a bifurcation of a periodic solution

at λc =
√

60
√

3−
√

8 ≈ 3.21 with critical wave number kc =
√

2
√√

2− 1 occurs. Details on the
theory of this system can be found in [UW14]. In general the continuation is more complicated in
(1) than in the Allen-Cahn models discussed in [RU17], as there are many more solution branches,
also see [UWR14, §4.2] for further comments. However, in this tutorial we avoid these problems by
considering relatively simple domains and branches.

pde2path uses a problem structure, which we call p, to store the data. In particular the unknown
function U = (u, v) = (u1, u2) is stored in p.u along with the parameters λ, σ and d. The parameters
must always be placed as the last entries of p.u. In detail, p.u will be the vector (u1, u2, λ, σ, d) in
this tutorial. As pde2path stores as many solutions as desired on hard disk it is suggested to work
with p as the only problem structure and load old solutions with loadp if needed, even though one
could define arbitrary many problem structure variables. See also [dWDR+17] for a data structure
overview and quick references.

The tutorial is organized as follows. In §2 we explain the basic implementation of the Schnaken-
berg model in pde2path and explain the general settings. In §3 we will use a basic set of commands
to numerically compute the trivial and the periodic branch bifurcating at λc along with a first fold
continuation. §4 works as an exercise and gives a more detailed bifurcation diagram with some
hints to recreate this. §5 takes a look at the model in a two dimensional domain and shows fold
continuation there. In §6 we will see the continuation of a branch point instead of a fold point in 1D.
In §7 we will give some details of the branch plotting function plotbra and show several example
plots.

In general the output generated by plotbra profits from some post processing with the standard
Matlab tools, but as these shall not be discussed here, we restrict it to a minimum.

The files corresponding to this tutorial are located in the demo folder schnakfold. Table 1
gives an overview. As this tutorial does not focus on solution plots, we outsourced these to the file
cmds sp.m. For detailed informations about solution plots see [Wet17].

1

Table 1: File structure of the demo schnakfold.

file description
sG.m residual of the pde
sGjac.m Jacobian
spjac.m Jacobian for spectral continuation
oosetfemops.m generates FEM/mass-matrices
schnakinit.m initialization of the problem
schnakbra f1D.m plotting function, used in §5 only
cmds f1D.m fold continuation in 1D
cmds f2D.m fold continuation in 2D
cmds b1D.m branch continuation in 1D
cmds ex.m solution for the 1D exercise in §4
cmds plot.m several plot commands
cmds sp.m solution plots

2 Basic setup

In the OOPDE setting we use here, see [Prü16] for detailed background and [RU17] for an introduction,
the basic setup of each pde2path problem consists of at least three parts. The oosetfemops.m

function to compute the needed FEM matrices, the sG and sGjac functions for the residual of the
PDE respectively the (analytical) Jacobian, and an init command file or function to set some basic
parameters. We now discuss these three parts in detail, e.g. give the code and some remarks.

Let us take a look at the implementation of the model functions first. Listing 1 shows the
implementation of the residual. We use some matrices p.mat.K and p.mat.M here which are the
FEM and mass matrices and will be defined in oosetfemops.m, see Listing 3. While it is convenient to
store the full mass matrix in p.mat.M it is sufficient to store the diffusion matrix for a scalar problem
in p.mat.K only and assemble the full matrix in sG.m respectively sGjac.m. For the implementation
of arbitrary diffusion coefficients, like d here, it even is necessary.

function r=sG(p,u)

u1=u(1:p.np); % solution component 1

u2=u(p.np+1:2*p.np); % solution component 2

par=u(p.nu+1: end); % parameters

5 f1=-u1+u1.^2.* u2+par (2)*(u1-u2.^(-1)).^2; % F_1(u), see eqn (1) in tut

f2=par (1)-u1.^2.*u2-par (2)*(u1-u2.^(-1)).^2; % F_2(u)

f=[f1;f2];

K=kron ([[1 ,0];[0 , par(3)]],p.mat.K); % assemble full FEM matrix

r=K*[u1;u2]-p.mat.M*f; % the residual

10 end

Listing 1: sG.m; calculation of the residual in FEM-discretization. p.u is the vector (u1, u2, λ, σ, d), i.e.
par= (λ, σ, d).

The Jacobian is created in the same way, see Listing 2.

function Gu=sGjac(p,u)

par=u(p.nu+1: end); % parameters

n=p.np;

[f1u ,f1v ,f2u ,f2v]=njac(p,u,par); % the Jacobian , see below

5 Fu=[[spdiags(f1u ,0,n,n),spdiags(f1v ,0,n,n)];

[spdiags(f2u ,0,n,n),spdiags(f2v ,0,n,n)]];

Gu=kron ([[1 ,0];[0 , par (3)]],p.mat.K)-p.mat.M*Fu; % assemble the Jacobian

end

function [f1u ,f1v ,f2u ,f2v]=njac(p,u,par) % Jacobian for Schnakenberg

10 u1=u(1:p.np); % solution component 1

u2=u(p.np+1:2*p.np); % solution component 2

% entries of the jacobian

2

f1u= -1+2*u1.*u2+2* par (2)*(u1 -u2.^(-1));

f1v=u1 .^2+2* par (2)*u2.^(-2) .*(u1 -u2.^(-1));

15 f2u=-2*u1.*u2 -2* par (2)*(u1 -u2.^(-1));

f2v=-u1.^2 -2* par (2)*u2.^(-2) .*(u1 -u2.^(-1));

end

Listing 2: sGjac.m; calculation of the Jacobian in FEM-discretization.

When coding sG.m and sGjac.m it is advised to separate the components of the unknown
function and the parameters as done here. Except p.mat.K and p.mat.M, the model is completely
implemented now and these two are initialized by oosetfemops.m, see Listing 3.

function p=oosetfemops(p)

[p.mat.K,M,~]=p.pdeo.fem.assema(p.pdeo.grid ,1,1,1); % FEM/mass matrices

% mass matrix adaption for the problem , as it is a system

p.mat.M=kron ([[1 ,0];[0 ,1]] ,M);

5 end

Listing 3: oosetfemops.m; as here we use homogeneous Neumann BC we only need to call assema and all
boundary terms are zero. The stiffness matrix K and the mass matrix M are then saved in p.mat.K and
p.mat.M.

If one hard codes the diffusion parameter, e.g. implements it with an explicit value, one can
also initialize the whole diffusion matrix in oosetfemops.m.

With these functions the Schnakenberg system is fully implemented, and to start a continuation
only three things miss: the domain, a set of parameters (λ0, σ0, d0) where the continuation shall
start and a rough guess for a solution at this setting. It is convenient to put some initializations
into an init function. Listing 4 gives basic settings for this example.

function p=schnakinit(p,dom ,mp,par)

%% setting standard parameters

p=stanparam(p); % infuses p with standard parameter settings

screenlayout(p); % open , clear and arrange the common figures

5
%% special parameters related to this model

% basics

p.nc.neq=2; % number of equations in the model

p.sw.sfem=-1; % type of numerical calculation , here OOPDE

10 p.sw.spjac =1; % use analytical Jacobian for spectral point cont (fold cont)

% names for cmp of stanbra

p.plot.auxdict ={’\lambda ’,’\sigma’,’d’,’||u_1||_{\ infty}’,’min(|u_1|)’};

% description of the model

p.fuha.sG=@sG; % the model itself

15 p.fuha.sGjac=@sGjac; % the Jacobian of the model

p.fuha.spjac=@spjac; % Jacobian for spectral point cont (fold cont)

%% domain and mesh

kc=sqrt(sqrt (2) -1); % wavenumer of the critical mode

20 switch length(dom);

case 1;

lx=dom *2*pi/kc; % set domain length according to critical wavenumber

p.pdeo=stanpdeo1D(lx ,2*lx/mp); % mesh [-lx ,lx], max mesh pt 2*lx/r

case 2;

25 nx=dom (1)*mp;

ny=dom (2)*mp;

lx=dom (1) *2*pi/kc; % set domain x-length

ly=dom (2) *2*pi/sqrt (3)/kc; % set domain x-length

p.pdeo=stanpdeo2D(lx ,ly ,nx ,ny); % mesh [-lx ,lx]x[-ly ,ly] mesh pt nx*

ny

30 end

p.np=p.pdeo.grid.nPoints; % number of meshpoints

3

p.nu=p.np*p.nc.neq; % number of unknowns (=2*(mesh points), as 2 components)

p=setfemops(p); % compute FEM -operators

35 %% bifurcation parameter , continuation basics and first guess for solution

p.nc.ilam =1; % primary bifurcation parameter located at p.u(p.np+p.nc.ilam)

p.sol.xi=1/p.nu; % weight in arclength -continuation

p.sol.ds= -0.01; % starting stepsize

p.nc.dsmax =0.01; % maximal stepsize

40 p.nc.dsmin =0; % minimal stepsize

% construction the trivial solution

lam=par (1); % setting parameter lambda

u=lam*ones(p.np ,1); % initial guess for u resp. u_1

v=(1/ lam)*ones(p.np ,1); % initial guess for v resp. u_2

45 p.u=[u;v;par ’]; % initial solution guess with parameters

end

Listing 4: schnakinit.m; initialization file. Sets basic informations for the mesh/domain, the solution, some
parameters, and makes the model information stored in sG.m, sGjac.m and oosetfemops.m accessible to
pde2path. The initial solution, lines 42ff, is explicit known here, but a rough guess is sufficient, see
[RU17, §3.1.3] for an example.

There are many additional options, and when working with a problem one may have to change
some of these, for example the step size ds. See [dWDR+17] for details. It is generally useful to give
the init function some inputs for domain, number of mesh points, value of parameters and so on to
be able to use the file for several investigations of the problem. Here we restricted the inputs to a
domain parameter dom, the number of mesh points mp and the values of the parameter organized
in a vector [λ, σ, d]. The switch distinguishes 1D and 2D by the type of the domain input. 2D will
be discussed later, for now only case one is relevant.

The function spjac.m, set in the init file at line 15 is the analytical Jacobian for spectral
continuation and is used for fold and branch point continuation. It is not necessary to define
it, but, as it has to be calculated numerically otherwise, speeds up fold continuation a lot. The
corresponding spjac.m file is shown in Listing 5. To check the calculations in sGjac.m and spjac.m,
call jaccheck(p) and spjaccheck(p) which compares the implemented derivatives of sG and sGjac

with a finite difference approximation. While jaccheck can be used directly after initializing the
problem, spjaccheck has to be used after the call of spcontini, which initialize the fold respectively
branch point continuation. See §3 for details.

function Gvvph=spjac(p,u)

u1=u(1:p.np); % first component

u2=u(p.np +1:2*p.np); % second component

4 par=u(2*p.nu+1: end); % parameters

s=par(2); % sigma

n=p.np; % number of function points per component

ov=ones(n,1); % dummy for the 1 function

% second order derivations of the model

9 f1uu =2*u2+2*s*ov;

f1uv =2*u1+2*s*u2.^(-2);

f1vv=-4*s*(u1-u2.^(-1)).*u2.^(-3) +2*s*u2.^(-4);

f2uu=-f1uu;

f2uv=-f1uv;

14 f2vv=-f1vv;

% implementation of the derivations as sparse matrices

ph1=u(p.nu+1:p.nu+p.np);

ph2=u(p.nu+p.np +1:2*p.nu);

M1=spdiags(f1uu.*ph1+f1uv.*ph2 ,0,n,n);

19 M2=spdiags(f1uv.*ph1+f1vv.*ph2 ,0,n,n);

M3=spdiags(f2uu.*ph1+f2uv.*ph2 ,0,n,n);

M4=spdiags(f2uv.*ph1+f2vv.*ph2 ,0,n,n);

4

Gvvph=-p.mat.M*[[M1 M2]; [M3 M4]];

end

Listing 5: spjac.m; analytical Jacobian for spectral continuation used for fold continuation. Can be
omitted if one sets p.sw.spjac=0 but speeds up fold continuation as otherwise being calculated numerically.

3 Basic fold continuation

Now that we have the basic setting we can start the continuation. One can do this in the command
window, but most of the time it is more useful to write a script file, for instance called cmds.m.
Before starting with a new problem one wants to clear the workspace and close all plots. Instead of
using the Matlab function clear all to clear the workspace we use keep pphome, as this will clear
all entries besides pphome which is needed for some secondary functions of pde2path, in particular
the help system. After clearing the workspace one initializes the problem variable p and fills it with
the standard settings. Listing 6 lists the commands for a fold continuation on the periodic branch.
It is highly recommended to run the script cell by cell.

%% 1 - creating a clear working space

close all; keep pphome;

%% 2 - initialising the problem

p=[];

5 par=[sqrt (60)*sqrt(3-sqrt (8))+5e-2, -0.6, 60]; % [lambda , sigma , d]

p=schnakinit(p,4,300,par);

p.plot.pmod =10; % shows each 10th solution in fig 2 only

p.file.smod =10; % stores each 10th solution only

p=setfn(p,’tr_f1D ’);

10 %% 3 - contiunation of the trivial branch

p=cont(p,20); % continuation for a maximum of 20 steps

%% 4 - switch to periodic branch and continuation with fold detection

p=swibra(’tr_f1D ’,’bpt1’,’per_f1D ’,1e-2); % switch to new branch with ds =0.01

p.sw.foldcheck =1; % enables detection of folds

15 p.sw.bifcheck =0; % disable detection of bifs

p=cont(p ,150); % continuation for a maximum of 150 steps

%% 5 - fold continuation in sigma

p=spcontini(’per_f1D ’,’fpt1’,2,’fold_f1D ’); % switch to fold cont in par. sigma

p.sol.ds=-1e-3; % continue backward in sigma

20 clf (2);

p.plot.bpcmp =1; % plot lambda position of fold over sigma in fig 2 now

p=cont(p,50); % continuation for a maximum of 50 steps

%% 6 - continuation at new fold point in lam again

p=spcontexit(’fold_f1D ’,’pt50’,’per2a_f1D ’); % exit fold continuation

25 p.sol.ds=1e-2; % continue forward in lambda

clf (2);

p.plot.bpcmp =0; % plot L2 -norm over lambda in fig 2

p=cont(p,20); % cont for a maximum of 20 steps

p=spcontexit(’fold_f1D ’,’pt50’,’per2b_f1D ’); % exit fold continuation

30 p.sol.ds=-1e-2; % continue forward in lambda

p.nc.lammin =3.2084; % minimal lambda - approx. bif point from trivial branch

p.plot.bpcmp =0; % plot L2 -norm over lambda in fig 2

p=cont(p ,120); % cont for a maximum of 120 steps

%% 7 - plot BD

35 figure (3);

clf;

plotbra(’tr_f1D ’); % trivial branch

plotbra(’per_f1D ’); % periodic nranch for sigma =-0.6

plotbra(’per2a_f1D ’,’cl’,’r’); % periodic branch for sigma = -0.7617

40 plotbra(’per2b_f1D ’,’cl’,’r’); % periodic branch for sigma = -0.7617

%% 8 - plot lambda over sigma for fold

5

figure (4);

clf;

plotbra(’fold_f1D ’ ,4,1); % plot lambda position of fold over sigma

Listing 6: cmds f1D.m; we continue the trivial branch, switch to a periodic one and make a fold
continuation in the parameter σ there. The results are plotted.

Cells one and two initialize the problem. There should be three figures after the run of these.
Matlab-figure 1 will show the current solution plot, Matlab-figure 2 will show a basic bifurcation
diagram, and Matlab-figure 6 will show special plots like the tangent vector at bifurcation points
if one switches the branch. Figure 1 and 2 should fill with life through the run of cell three which
calculates a small part of the trivial branch. One should also see some output in the command
window then. Matlab-figure 6 then fills by the use of swibra in cell four. To see what the further
cells do, see the commented script in Listing 6. At cells seven and eight one should get the graphs
shown in Figure 1a,b.

(a) Bifurcation diagram (b) plot λ over σ for the fold position

3.2 3.3 3.4

λ

28

30

32

34

L
2
-n

o
rm

-0.75 -0.7 -0.65 -0.6

σ

3.38

3.39

3.4

3.41

λ

(c) solution at folds in the
domain [−8π/kc, 8π/kc]

u1 at black fold

2

4

u1 at red fold

2

4

Figure 1: (a),(b) Matlab output after the run of cmds f1D.m. (c) Solution plots at the fold of the
red and black branch of periodic solutions. For details on the creation of the solution plots see
[Wet17].

You may now modify the script on your own. But, as already mentioned in the introduction,
the system (1) has many solutions even in 1D, so in particular a change of the domain will change
the continuation results a lot, as additional bifurcation points will rise, and some might not be
found with cont anymore, if to many bifurcation points are close to each other. This implies, that a
change from 1D to 2D is – even though one only has to give another domain parameter – a delicate
problem for this system. For this reason it is cumbersome to transfer the above example in 2D. That
is why we continue with an 1D exercise, and will give another example for a 2D fold continuation
afterwards.

4 Exercise 1D

Starting from the cmds file in the previous section, it is a good exercise to recreate the bifurcation
diagram shown in Figure 2a and the fold continuation shown in Figure 3a. To do so it is advised to
copy the files for the basic fold continuation in a new directory and modify them as necessary. The
only numerical constants one wants to adjust for this plots are p.nc.lammin and p.nc.lammax. No
changes in domain size or mesh points are needed. Also note, that the classical way to find the
magenta branch would be to switch branch via swibra from the end of the snaking branch and
continue in both directions, but this tends to fail. There are other ways. As stated in the caption,
Figure 3a is created by following the third and forth fold point of the blue branch of localized
patterns. See Figure 3b for a location of these. Possible solutions to create the plots are located in
cmds ex.m. Keep in mind, that multiple calls of the same plot will lead to slightly different figures,

6

(a) Bifurcation diagram (σ = −0.6)

3 3.1 3.2 3.3 3.4 3.5

λ

28

30

32

34

36

L
2
-n

o
rm

BP1

BP2

BP1

BP2

BP6BP7

(b) several solution
plots in the domain
[−8π/kc, 8π/kc]

2

4

u1, magenta branch

2

4

u1, red branch

2

4

u1, blue branch

2

4

u1, cyan branch

Figure 2: (a) detailed bifurcation diagram of the 1D Schnakenberg model for σ = −0.6. The labeling
can be improved by various options, for instance through the use of ’fancy’,2 as additional input
for plotbra. See §7 for some details. (b) several solution plots generated with plotsol. See [Wet17]
for a detailed description of plotsol.

as the labels offset is randomized. Thus a solution to the exercise might not exactly look like Figure
2a. If the verification of a solution is difficult one can plot the solution in cmds ex without labels
and compare this with a unlabeled version of the own solution. See §7 or [dWDR+17] for details
on how to do so.

5 2D fold continuation

The init file for 2D has already been discussed in §2. The only difference lies in the call of schnakinit
with a vector as the domain size, which will switch on case two and thus uses stanpdeo2D instead
of stanpdeo1D. Additional changes which are commonly placed in the init file have been moved
to lines 11-18 in the cmds file. These enhance the branch and solution plotting. As indicated in
§3 even though the transfer of the problem from 1D to 2D is easy, the adaption of the example is
not. Thus a continuation of a fold in a hexagon-branch which has no 1D correspondence has been
done. As a consequence the similarities of the command files are negligible and instead of discussing
changes we quote the whole file again, see Listing 7. The output is shown in Figure 4a,b.

%% 1 - creating a clear working space

close all; keep pphome;

%% 2 - initialising the problem (2D)

p=[];

5 par=[sqrt (60)*sqrt(3-sqrt (8))+1e-3, 0, 60]; % [lambda , sigma , d]

dom =[4 ,1]; % domain parameter

p=schnakinit(p,dom ,20,par);

p.nc.dsmax=1e-1; % increase dsmax for faster calculation

p.file.smod =1; % store each solution

10 p=setfn(p,’tr_f2D ’);

% plot improvments for 2D

7

p.plot.pstyle =2;

p.plot.cm=hot;

p.fuha.outfu=@schnakbra_f2D; % new branch data (in particular L8 -norm with

||1||=1)

15 kc=sqrt(sqrt (2) -1);

p.Om=16*pi^2*(dom(1)/kc*dom(2)/(sqrt (3)*kc)); % interval length

% names for cmp of schnakbra

p.plot.auxdict ={’\lambda ’,’\sigma’,’d’,’||u||_{\ infty}’,’min(|u|)’,’||u||_8’};

%% 3 - find first two bif -points from homog. branch

20 p.nc.nsteps =30;

p=findbif(p,2); % find first two bif points in max p.nc.nsteps steps , if possible

%% 4 - branch -switch to cold hexagons

p=swibra(’tr_f2D ’,’bpt2’,’hex_f2D ’ ,0.05); % switch to cold hexagon branch

p.sw.foldcheck =1; % detect folds

25 p.sw.bifcheck =0; % disable bif detection

p=cont(p,10); % cont for max of 10 steps

%% 5 - fold continuation

p=spcontini(’hex_f2D ’,’fpt1’,2,’fold_f2D ’); % init fold continuation in par 2

p.sol.ds=-1e-3; % new stepsize in new primary parameter

30 p.plot.bpcmp =1; % plot lam of fold position over sigma in fig 2 now

clf (2);

p.nc.lammin =-10; %p.nc.lammin = -0.5; % set minimal sigma (!) to -0.5

p=cont(p,15); % cont for a max of 15 steps

%% 6 - cont. in lam again from foldpoint

35 p=spcontexit(’fold_f2D ’,’pt9’,’hex2a_f2D ’); % back to normal cont

p.sol.ds= -0.005;

p.nc.dsmax =0.02;

p.nc.lammin =3.2; % minimal lambda (!) is 3.2 now

p.plot.bpcmp =0; % plot l2 -norm over lam in fig 2 again

40 clf (2);

p=cont(p,25);

p=spcontexit(’fold_f2D ’,’pt9’,’hex2b_f2D ’); % back to normal cont

p.sol.ds =0.01;

p.nc.dsmax =0.05;

45 p.nc.lammin =3.208; % set min lambda to approx bif point

p.plot.bpcmp =0; % plot l2 -norm over lam in fig 2 again

p=cont(p,10); % cont for a max of 10 steps

%% 7 - plot BD

figure (3);

50 clf;

% plot analytical trivial branch

plot ([3.208 ,3.24] ,[3.208 ,3.24] , ’color ’,’k’,’Linewidth ’ ,4);

hold on;

plot ([3.208 ,3.05] ,[3.208 ,3.05] , ’color ’,’k’,’Linewidth ’ ,2);

55 % plot computed branches with l8 -norm

plotbra(’tr_f2D ’,’pt6’,3,6,’cl’,’k’);

plotbra(’hex_f2D ’,’pt10’,3,6,’fp’,2,’cl’,’b’);

plotbra(’hex2a_f2D ’,’pt24’,3,6,’cl’,’r’);

plotbra(’hex2b_f2D ’,’pt9’,3,6,’cl’,’r’);

60 % post processing

axis ([3.2 3.242 3.2 3.45]);

text (3.202 ,3.33 ,’ch, \sigma =0’,’color ’,’b’,’fontsize ’ ,16);

text (3.205 ,3.4 ,’ch, \sigma = -0.1395’,’color ’,’r’,’fontsize ’ ,16);%3.205 ,3.432

text (3.225 ,3.21 ,’hom’,’color ’,’k’,’fontsize ’ ,16);

65 %% 8 - plot lambda over sigma for fold

figure (4);

clf;

plotbra(’fold_f2D ’,’pt15’ ,4,1); % plot lam over sigma for fold position

Listing 7: cmds f2D.m; fold continuation of so called cold hexagons in 2D Schnakenberg model.

8

(a) plot λ over σ for fold position (b) Fold positions

-0.8 -0.7 -0.6 -0.5

σ

3.3

3.35

3.4

3.45

3.5
λ

3.25 3.3 3.35 3.4

λ

29

30

31

32

33

L
2

-n
o

rm

FP3FP4

Figure 3: (a) continuation of the fold points FP3 (black line) and FP4 (red line) shown in (b) with
respect to σ. (b) third and fourth fold point on the blue branch in Figure 2.

(a) Bifurcation diagram (b) plot λ over σ for the fold position

3.2 3.22 3.24

λ

3.2

3.3

3.4

||
u
||

8

ch, σ=0

ch, σ=-0.1395

hom

-0.3 -0.2 -0.1 0

σ

3.22

3.24

3.26

3.28

3.3

3.32

3.34

λ

(c) solution at blue fold in
a [4,1] domain

u1

u2

Figure 4: (a),(b) Matlab output after the run of cmds f2D.m. ch stands for cold hexagons the form
of solution on the blue/red branch. (c) both solution components at the fold on the blue branch.

We used findbif instead of cont to find the bifurcation points on the trivial branch, as the
bifurcation detection methods in cont tend to fail here due to too many bifurcations points close
to each other. This is a general troubleshoot if one does not find the desired bifurcation point.
Changing p.sol.ds along with the limits p.nc.dsmin and p.nc.dsmax or a change of the mesh are
two further good tries.

For a better plotting experience we customized pde2path to plot the L8 norm of the first
component u1, normalized through ‖1‖8 = 1, instead of the L2 norm by replacing stanbra.m with
snakbra f2D.m. In greater detail snakbra f2D adds the L8 norm to the outputs generated by
stanbra. This is the convenient way to change the branch data generating function. The first
branch data generated by p.fuha.outfu should always be the parameters for axis labeling through
the use of auxdict.

6 Branch point continuation

The idea of fold continuation is to follow a zero eigenvalue via the extended system (12) in [RU17].
Thus we may attempt to use the same method for branch point continuation. Although this is only
guaranteed to work for systems (bifurcations) with up-down symmetry, see [WS84], in practice we
found it to work for general systems with some caveats.

The syntax keeps the same, e.g. call spcontini at the branch point which should be continued,
continue with cont and call spcontexit to leave the branch point continuation and be able to
start with a normal continuation again. As an example we continued the branch point of a periodic

9

solution from the trivial one in 1D, marked as BP1 in Figure 2a. See Figure 5 for the results. The

(a) Bifurcation diagram (b) plot d over λ for branch point position

2.6 2.8 3 3.2

λ

18

20

22

24

L
2

-n
o

rm

d=60

d=47.2768

50 55 60

d

2.9

3

3.1

3.2

λ

Figure 5: (a) Continuation of the branch point connecting the trivial and an periodic solution.
Shown is the trivial branch and the periodic branch for d = 60 and d = 47.2768. (b) The position
of the branch point with respect to d. Both plots are generated though cmds b1D.m.

code is given in cmds b1D.m. As the Jacobian in spjac is ill conditioned for this branch point a
secant predictor is used through the switch p.sw.secpred=1. bpcontexit is used to mark the point
as a branch point and to compute the pertinent tangent.

7 Details of plotbra

All relevant data for branch plotting is saved in a matrix in p.branch. Each column represents a
computed – not necessarily stored – point while the rows contain different informations about this
point. The first five rows are filled by bradat and are the point number, its type (reg/bif/etc),
the number of negative eigenvalues, the active parameter value, the solutions error and its L2-
norm. The further rows are by default filled through stanbra which can easily be changed through
p.fuha.outfu as for example done in §5 with the function schnakbra f1D.

Thus this data can be used to directly plot branches with the Matlab plotting commands. To
simplify this pde2path has the high level function plotbra which plots and in particular labels
branches suitable for most situations.

The basic call of plotbra is plotbra(p) for a problem structure or plotbra(’dir’) to plot
the branch from a directory. See Figure 6a for an example. The generating code is given in Listing
8, cell ’basic 2’. The behavior of plotbra(p) respectively plotbra(’dir’) can be controlled via a
few fields in p.plot, see Table 2. This fields should be set in the beginning of a continuation for
example in the init file.

Table 2: Options of plotbra which can be set through structure fields.

option field purpose default
lsw p.plot.lsw switch for basic labeling, see below and [dWDR+17],tab 24 for de-

tails; lsw= xxxx12 is required for user lambda labels
1

wnr p.plot.brafig figure number to plot 3
cmp p.plot.bpcmp row of p.branch which shall be plot. If number: y-comp only, if

vector: [x y] comp number
0

fancy p.plot.fancybd fancyness of plot, in particular: 0: no annotation arrow; 1: fixed
ones; 2: movable ones

1

fs, lfs p.plot.fs axis and label font size 16
auxdict p.plot.auxdict dictionary for the components in stanbra, see below for details {}

The option lsw is the main switch for default plotting. Written in binary number its entries are

10

switches for labels of regular, fold, hopf, branch and usrlam points, i.e. a value of 100002 = 1610
correspond to labeling all regular points, while 011002 = 1210 correspond to labels for all fold and
hopf points only. The value has to be given in decimal numbers. See Table 3 for a list of possible
values.

Table 3: Settings for p.plot.lsw and ’lsw’,lsw argument of plotbra, for regular point la-
bels=’off’. For regular point labels=’on’, add 16 to lsw.

lsw 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

userlam 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
branch 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
hopf 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
fold 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

The default value for lsw labels so called ’user lambdas’ only, which have to be defined in the
beginning of a continuation as a vector in p.usrlam. See Figure 6c and cells usrlam 1,usrlam 2
in Listing 8 for a minimal example. Further modifications of the branch plotting can be achieved
through (string,value) pairs as additional inputs, see Table 4 for a description of these.

Table 4: (string, value) pairs for function plotbra.

option purpose standard value
lwun line width of unstable solution 2
lwst line width of stable solution 4
lw overrides lwst=lw, lwun=lw/2 set through lwun, lwst
tyun line type of unstable solution ’-’
tyst line type of stable solution ’-’
ms marker size (branch/hopf points) 5
fms marker size (fold points) 0
lms marker size (labeled points); if number: all labeled points, if

vector: [reg. bif.]
[5 4]

rms marker size (all reg. points) marks reg points; 0 is the convenient
choice

0

lsw recessive switch for the basic labeling, detailed description above;
lsw= xxxx1 is required for user lambda labels

p.plot.lsw=1

lab place markers and labels for given label-list and disables the
labels for user lambdas

set through lsw

labi as ’lab’, but step through all labels in branch with given incre-
ment

labu if 1 & lsw= 1 + x: user lambdas will be plotted even if a set of
regular labels is given through ’lab’ or ’labi’

0

fs font size for labels and axes p.plot.fs
lfs font size for labels, if zero no labels (only markers) p.plot.fs
fp first point to be considered 1
lp last point to be considered last point in p.branch
cl color, see option in plot ’black’
bplab place markers and labels for label-list of branch points set through lsw
fplab place markers and labels for label-list of fold points set through lsw
hplab place markers and labels for label-list of hopf points set through lsw
fancy 0: no annotation arrow, 1: static annotation arrow, 2: annota-

tion arrow movable by mouse
1

wnr figure number p.plot.brafig=3
cmp row of p.branch which shall be plot. If number: y-comp only, if

vector: [x y] comp number
p.plot.bpcmp=0 (‖u1‖2)

11

os length of annotation arrow 1
odr direction of annotation arrow for regular points fully random if

[0 0]
[1 -1]

ods as odr for bifurcation points [1 0.1]
auxdict dictionary for the components in stanbra, see below for details {}

They are called as plotbra(...,’option’,value), like plotbra(p,’fancy’,2,’lab’,[4 5]).
Additional one can also insert an arbitrary amount of (string,value) pairs as a cell array, which can
be used to easily recall personal standard settings, for instance if other marker/branch sizes are
desired. See Figure 6b and Listing 8 cell ’cell 2’ for an example. As commonly used and for
backward compatibility one can also call plotbra(X,wnr,cmp,varargin) with X=p or ’dir’ or
’dir,’pt’ to set the figure and component number without the call of the option string. If no
point is selected the last point in the directory will be loaded. If the directory is not messed up the
specification of a point can always be replaced through the last point option, ’lp’, but if one wants
to plot the branch until a special point, for instance a branch point, the specification as a point in
the directory is more easy, as one can use the syntax plotbra(’dir’,’bpt1’).

Only the last call of an option is taken into account, thus (string,value) pairs always overrides
settings through fields in p.plot and of course default settings as well. The only exception are the
first four digits in ’lsw’ written as a binary number, as this options are dominated by any other
labeling option. Still only the last call of ’lsw’ is taken into account and lsw= xxxx12 is necessary
to label user lambdas.

The option ’cmp’, respectively p.plot.bpcmp allows negative numbers. In greater detail 0 stands
for the last component in bradat, e.g. the L2-norm, while −5 is the first component, e.g. the points
number. The positive values for ’cmp’ count through the user datas generated by p.plot.outfu.

The option ’auxdict’ respectively the field p.plot.auxdict can be filled with a dictionary of
the components generated by p.fuha.outfu, as already used in the schnakinit file, see Listing
4 line 12. If set it is used to label the x-axis in the default setting as well. For this reason the
dictionary should start with the parameters, i.e. {’\lambda’, ’\sigma’,d, ...}, which implies,
that p.fuha.outfu should generate this data as the first components as well.

The option ’fancy’ respectively p.plot.fancybd switches the style of annotations. The setting
(’fancy’,0) does not plot any annotation arrows. The default setting ’fancy’=1 plots fixed annotation
arrows and is the convenient choice when working with pde2path. When preparing papers one can
spare a lot post processing time with the use of ’fancy’=2 which will plot movable annotation, but
this is slow for many labels. Also ’fancy’=2 uses undocumented Matlab code and thus is error
prone. In particular ’fancy’=2 does not work satisfactorily with subplots.

%% basic/cell 1 - switch to periodic branch

p=swibra(’tr_plot ’,’bpt1’,’per_plot ’,1e-2); % switch to new branch with ds =0.01

p=cont(p ,150); % continuation for a maximum of 150 steps

15 %% basic 2 - basic plot

figure (3);

clf;

plotbra(’tr_plot ’); % trivial branch

% plotbra(’tr_plot ’,’pt20 ’); % plots the same , ’pt10 ’ plots a shortend branch

20 plotbra(’per_plot ’); % periodic branch

% plotbra(p); % generates the same as plotbra(’per_plot ’)

%% cell 2 - plot with options through a cell array

figure (3);

clf;

25 basic ={’ms’,2,’fancy’,0,’lsw’ ,15};

plotbra(’tr_plot ’,basic); % trivial branch

% plotbra(’tr_plot ’,’ms ’,2,’fancy ’,0,’lsw ’,15); % plots the same

plotbra(’per_plot ’,basic); % periodic branch

12

% plotbra(p,basic) % plots the same as plotbra(’per_plot ’,basic)

30 %% usrlam 1 - usrlam data generation

p=swibra(’tr_plot ’,’bpt1’,’per_plot_usrlam ’,1e-2); % switch to periodic branch

p.usrlam =3:0.1:3.5; % set userlambdas

p=cont(p ,200); % continuation for a maximum of 200 steps

%% usrlam 2 - usrlam plotting

35 figure (3);

clf;

plotbra(p); % periodic branch with usrlabels , as lsw=1 by default

% plotbra(’per_plot ’); would plot the same

plotbra(’tr_plot ’); % trivial branch - no labels , as p.usrlam ={} in Cell 3

Listing 8: cmds plot.m; differnt plots of the trivial and the first periodic branch generated in cmds f1D,
see Listing 6. The data generation in the first 12 lines is the same as in cmds f1D besides the problem
directory changed to tr plot. The cell headings descripe which cell is necessary for the corresponding
examples in Figure 6. Lines 1-12 re required for all examples.

(a) basic call (b) change of settings via cell (c) plot with predefined user lambdas

3.2 3.3 3.4

λ

28

30

32

34

L
2

-n
o

rm

3.2 3.3 3.4

λ

28

30

32

34

L
2

-n
o

rm

BP1
BP2BP3

BP1
BP2

BP3

BP4

BP5

3.1 3.2 3.3 3.4

λ

28

30

32

34

L
2

-n
o

rm

77

131
146169183

198

Figure 6: (a) basic call of plotbra(p). (b) call of plotbra with reduced markersize and no an-
notation arrows via an cell array of (string,value) pairs. (c) call of plotbra with predefined user
lambdas 3,3.1,3.2,3.3,3.4 and 3.5. For all three examples see cmds plot.m.

References

[DRUW14] T. Dohnal, J. Rademacher, H. Uecker, and D. Wetzel. pde2path - V2: faster FEM and periodic
domains, 2014.

[dWDR+17] H. de Witt, T. Dohnal, J. Rademacher, H. Uecker, and D. Wetzel. pde2path - Quickstart guide
and reference card, 2017.

[Prü16] U. Prüfert. OOPDE: FEM for Matlab, www.mathe.tu-freiberg.de/nmo/mitarbeiter/

uwe-pruefert/software, 2016.

[RU17] J. Rademacher and H. Uecker. The OOPDE setting of pde2path - a tutorial via some Allen-Cahn
models, 2017.

[Uec17] H. Uecker. pde2path, www.staff.uni-oldenburg.de/hannes.uecker/pde2path, 2017.

[UW14] H. Uecker and D. Wetzel. Numerical results for snaking of patterns over patterns in some 2D
Selkov-Schnakenberg Reaction-Diffusion systems. SIADS, 13-1:94–128, 2014.

[UWR14] H. Uecker, D. Wetzel, and J. Rademacher. pde2path – a Matlab package for continuation and
bifurcation in 2D elliptic systems. NMTMA, 7:58–106, 2014.

[Wet17] D. Wetzel. A pde2path plotsol tutorial, 2017.

[WS84] B. Werner and A. Spence. The computation of symmetry-breaking bifurcation points. SIAM
J. Numer. Anal., 21(2):388–399, 1984.

13

www.mathe.tu-freiberg.de/nmo/mitarbeiter/uwe-pruefert/software
www.mathe.tu-freiberg.de/nmo/mitarbeiter/uwe-pruefert/software
www.staff.uni-oldenburg.de/hannes.uecker/pde2path

	Introduction
	Basic setup
	Basic fold continuation
	Exercise 1D
	2D fold continuation
	Branch point continuation
	Details of plotbra

