integrate u over Omega given by p(oints) and t(riangles) u=1 component of nodal values, i.e., size(u)=np x 1
0001 function i=triint(u,p,t) 0002 % integrate u over Omega given by p(oints) and t(riangles) 0003 % u=1 component of nodal values, i.e., size(u)=np x 1 0004 a1=t(1,:);a2=t(2,:);a3=t(3,:);% Corner point indices 0005 % Triangle sides 0006 r23x=p(1,a3)-p(1,a2);r23y=p(2,a3)-p(2,a2);r31x=p(1,a1)-p(1,a3); 0007 r31y=p(2,a1)-p(2,a3); 0008 ar=abs(r31x.*r23y-r31y.*r23x)/2;% areas of tiangles 0009 ut=pdeintrp(p,t,u);i=ut*ar';