Webpages of the old version pde2path 1.0,
outdated!
We strongly recommend to switch to
pde2path 2.* The system and the boundary conditions
pde2path treats PDE systems
\begin{equation}\label{gform}
G(u,\lam):=-\nabla\cdot(c\otimes\nabla u)+a u-b\otimes\nabla u-f=0,
\end{equation}
where $u=u(x)\in\R^N$, $x\in\Omega\subset\R^2$ some
bounded domain, $\lam\in\R$ is a parameter, and
$c(\cdot)\in\R^{N\times N\times 2\times 2}$,
$b(\cdot)\in\R^{N\times N\times 2}$,
$a(\cdot)\in\R^{N\times N}$ and $f(\cdot)\in\R^N$
can depend on $x,u,\nabla u$, and, of course,
parameters.
The boundary conditions are
\begin{align}\label{e:gnbc}
{\bf n}\cdot (c \otimes\nabla u) + q u = g,
\end{align}
where ${\bf n}$ is the outer normal and again $q(\cdot)\in \R^{N\times N}$
and $g(\cdot)\in \R^N$ may depend on $x$, $u$, $\nabla u$ and
parameters.
The meanings of $au$ and $f$ are standard,
and the notations $\nabla\cdot(c\otimes\nabla u)$,
$b\otimes\nabla u$ and ${\bf n}\cdot (c \otimes\nabla u)$
mean the following: c-tensor.
The $i^{{\rm th}}$ component of
$\nabla\cdot(c\otimes\nabla u)$ is given by
$$
[\nabla\cdot(c\otimes\nabla u)]_i:=
\sum_{j=1}^N [\pa_xc_{ij11}\pa_x+\pa_x c_{ij12}\pa_y+\pa_yc_{ij21}\pa_x
+\pa_yc_{ij22}\pa_y]u_j\,.
$$
b-tensor.
The $i^{{\rm th}}$ component of
of $b\otimes\nabla u$ is given by
$$
[b\otimes\nabla u]_i:=\sum_{j=1}^N [b_{ij1}\pa_x+b_{ij2}\pa_y]u_j.
$$
Essentially, we added these advection terms
to the pdetoolbox for the efficient
evaluation of Jacobians.
Flux normal component.
Finally, $i^{{\rm th}}$ component of
${\bf n}\cdot (c \otimes\nabla u)$ is given by
$$
[{\bf n}\cdot (c \otimes\nabla u)]_i=\sum_{j=1}^N
[n_1(c_{ij11}\pa_x+c_{ij12}\pa_y)+n_2(c_{ij21}\pa_x+c_{ij22}\pa_y)]u_j,
$$
where ${\bf n}=(n_1,n_2)$.
See Demos for the
implementation of \eqref{gform} and
\eqref{e:gnbc} for pde2path for a number of examples.